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INTRODUCTION

In recent years, advances have been made in the theoretical and the
empirical analysis of the term structure of interest rates. However, such
analysis is often very quantitative, and it rarely emphasizes practical
investment applications. There appears to be a need to bridge the gap
between theory and practice and to set up an accessible framework for
sophisticated yield curve analysis. This report serves as an overview of a
forthcoming series of reports that will examine the theme Understanding
the Yield Curve. After briefly describing the computation of par, spot and
forward rates, it presents a framework for interpreting the forward rates by
identifying their main influences and finally, it develops practical tools for
using forward rate analysis in active bond portfolio management.
Subsequent reports will discuss these topics in detail.!

The three main influences on the Treasury yield curve shape are: (1) the
market’s expectations of future rate changes; (2) bond risk premia
(expected return differentials across bonds of different maturities); and (3)
convexity bias. Conceptually, it is easy to divide the yield curve (or the
term structure of forward rates) into these three components. It is much
harder to interpret real-world yield curve shapes, but the potential benefits
are substantial. For example, investors often wonder whether the curve’s
steepness reflects the market’s expectations of rising rates or positive risk
premia. The answer to this question determines whether a duration
extension increases expected returns. It also shows whether we can view
forward rates as the market’s expectations of future spot rates. In addition,
our analysis will describe how the market’s curve reshaping expectations
and volatility expectations influence the shape of today’s yield curve.
These expectations determine the cost of enhancing a portfolio’s convexity
via a duration-neutral yield curve trade.

Forward rate analysis also can be valuable in direct applications. Forward
rates may be used as break-even rates with which subjective rate forecasts
are compared or as relative value tools to identify attractive yield curve
sectors. Subsequent reports will analyze many aspects of yield curve trades,
such as barbell-bullet trades, and present empirical evidence about their
historical behavior.

COMPUTATION OF PAR, SPOT AND FORWARD RATES
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At the outset, it is useful to review the concepts "yield to maturity,” "par
yield," "spot rate," and "forward rate" to ensure that we are using our
terms consistently. Appendix A is a reference that describes the notation
and definitions of the main concepts used throughout the series
Understanding the Yield Curve. Our analysis focuses on government bonds
that have known cash flows (no default risk, no embedded options). Yield
to maturity is the single discount rate that equates the present value of a
bond’s cash flows to its market price. A yield curve is a graph of bond
yields against their maturities. (Alternatively, bond yields may be plotted
against their durations, as we do in many figures in this report.) The
best-known yield curve is the on-the-run Treasury curve. On-the-run bonds
are the most recently issued government bonds at each maturity sector.

1 This overview will contain few references to earlier studies, but later reports in this series will provide a guide to
academic and practitioner literature for interested readers.



Because these bonds are always issued with price near par (100), the
on-the-run curve often resembles the par yield curve, which is a curve
constructed for theoretical bonds whose prices equal par.

While the yield to maturity is a convenient summary measure of a bond’s
expected return — and therefore a popular tool in relative value analysis
— the use of a single rate to discount multiple cash flows can be
problematic unless the yield curve is flat. First, all cash flows of a given
bond are discounted at the same rate, even if the yield curve slope suggests
that different discount rates are appropriate for different cash flow dates.
Second, the assumed reinvestment rate of a cash flow paid at a given date
can vary across bonds because it depends on the yield of the bond to
which the cash flow is attached. This report will show how to analyze the
yield curve using simpler building blocks — single cash flows and
one-period discount rates — than the yield to maturity, an average
discount rate of multiple cash flows with various maturities.

A coupon bond can be viewed as a bundle of zero-coupon bonds (zeros).
Thus, it can be unbundled into a set of zeros, which can be valued
separately. These zeros then can be rebundled into a more complex bond,
whose price should equal the sum of the component prices.2 The spot rate
is the discount rate of a single future cash flow such as a zero. Equation
(1) shows the simple relation between an n-year zero’s price P, and the
annualized n-year spot rate s .

100

Po= s (1)

A single cash flow is easy to analyze, but its discount rate can be
unbundled even further to one-period rates. That is, a multiyear spot rate
can be decomposed into a product of one-year forward rates, the simplest
building blocks in a term structure of interest rates. A given term structure
of spot rates implies a specific term structure of forward rates. For
example, if the m-year and n-year spot rates are known, the annualized
forward rate between maturities m and n, fy, ,, is easily computed from
Equation (2). '

(1 + sy

(1+ fm.n)n-m = (1 +s,)m Q)

The forward rate is the interest rate for a loan between any two dates in
the future, contracted today. Any forward rate can be "locked in" today by
buying one unit of the n-year zero at price P, = 100/(1+s,)" and by
shortselling P, /Py, units of the m-year zero at price Py, = 100/(1+s5)™.
(Such a weighting requires no net investment today because both the cash
inflow and the cash outflow amount to P,.) The one-year forward rate
(fo-1.0 Such as £y, fo3, f34, ...) represents a special case of Equation (2) in
which m = n-1. The spot rate represents another special case in which

m = 0; thus, s, = fy,.

2 Arbitrage activities ensure that a bond’s present value is similar when its cash flows are discounted using the
marketwide spot rates as when its cash flows are discounted using the bond’s own yield to maturity. However, some
deviations are possible because of transaction costs and other market imperfections. In other words, the term structure
of spot rates gives a consistent set of discount rates for all government bonds. but all bonds’ market prices are not
exactly consistent with these discount rates. Individual bonds may be rich or cheap relative to the curve because of
bond-specific liquidity, coupon. tax. or supply effects. For example. the Salomon Brothers Government Bond Strategy
Group reports daily each bond’s spread off the estimated Treasury Model curve. (Because cheapness appears to persist
over time, many investors prefer to use the Model spread relative to its own history as a relative value indicator.)
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To summarize, a par rate is used to discount a set of cash flows (those of a
par bond) to today, a spot rate is used to discount a single future cash flow
to today and a forward rate is used to discount a single future cash flow to
another (nearer) future date. The par yield curve, the spot rate curve and
the forward rate curve contain the same information about today’s term
structure of interest rates® — if one set of rates is known, it is easy to
compute the other sets.* Figure 1 shows a hypothetical example of the
three curves. In Appendix B, we show how the spot and forward rates
were computed based on the par yields.

Figure 1. Par, Spot and One-Year Forward Rate Curves
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In this example, the par and spot curves are monotonically upward sloping,
while the forward rate curve’ first slopes upward and then inverts (because
of the flattening of the spot curve). The spot curve lies above the par
curve, and the forward rate curve lies above the spot curve. This is always
the case if the spot curve is upward sloping. If it is inverted, the ordering
is reversed: The par curve is highest and the forward curve lowest. Thus,
loose characterizations of one curve (for example, steeply upward-sloping,
flat, inverted, humped) are generally applicable to the other curves.
However, the three curves are identical only if they are horizontal. In other
cases, the forward rate curve magnifies any variation in the slope of the
spot curve. One-year forward rates measure the marginal reward for
lengthening the maturity of the investment by one year, while the spot
rates measure an investment’s average reward from today to maturity n.
Therefore, spot rates are (geometric) averages of one or more forward

3 These curves can be computed directly by interpolating between on-the-run bond yields (approximate par curve) or
between zero yields (spot curve). Because these assets have special liquidity characteristics, these curves may not be
representative of the broad Treasury market. Therefore. the par. spot or forward rate curve is typically estimated using
a broad universe of coupon Treasury bond prices. Many different "curve fitting" techniques exist, but a common goal
is to fit the prices well with a reasonably shaped curve. This report does not focus on yield curve estimation but on the
interpretation and practical uses of the curve once it has been estimated.

4 Further. one can use today’s spot rates and Equation (2) to back out implied spot curves for any future date and
implied future paths for the spot rate of any maturity. It is important to distinguish the implied spot curve one year
forward (f, .. f, 5. £, ;. ... a special case of Equation (2) in which m = 1. from the constant maturity one-year forward
rate curve (f) 5. f55. fy 4. ...). Today's spot curve can be subtracted from the former curve to derive the yield changes
implied by the forwards. (This terminology is somewhat misleading because these "implied” forward curves/paths do
not reflect only the market’s expectations of future rates.)

2 Note that all one-year forward rates actually have a one-year maturity even though, in the x-axis of Figure 1, each
forward rate’s maturity refers to the final maturity. For example. the one-year forward rate between n-1 and n (f, )
matures n years trom today.



rates. Similarly, par rates are averages of one or more spot rates; thus, par
curves have the flattest shape of the three curves. In Appendix C, we
discuss further the relationship between spot and forward rate curves.

It is useful to view forward rates as break-even rates. The implied spot
rates one year forward (f, ,, f, 3, f, 4, ...) are, by construction, equal to such
future spot rates that would make all government bonds earn the same
return over the next year as the (riskless) one-year zero. For example, the
holding-period return of today’s two-year zero (whose rate today is s,) will
depend on its selling rate (as a one-year zero) in one year’s time. The
implied one-year spot rate one year forward (f, ,) is computed as the
selling rate that would make the two-year zero’s return (the left-hand side
of Equation (3)) equal to the one-year spot rate (the right-hand side of
Equation (3))¢. Formally, Equation (3) is derived from Equation (2) by
setting m = 1 and n = 2 and rearranging.

3)

Consider an example using numbers from Figure 1, in which the one-year
spot rate (s;) equals 6% and the two-year spot rate (s;) equals 8.08%.
Plugging these spot rates into Equation (3), we find that the implied
one-year spot rate one year forward (f} ») equals 10.20%. If this implied
forward rate is exactly realized one year hence, today’s two-year zero will
be worth 100/1.1020 = 90.74 next year. Today, this zero is worth
100/1.08082 = 85.61; thus, its return over the next year would be
90.74/85.61-1 = 6%, exactly the same as today’s one-year spot rate. Thus,
10.20% is the break-even level of future one-year spot rate. In other words,
the one-year rate has to increase by more than 420 basis points
(10.20%-6.00%) before the two-year zero underperforms the one-year zero
over the next year. If the one-year rate increases, but by less than 420
basis points, the capital loss of the two-year zero will not fully offset its
initial yield advantage over the one-year zero.

More generally, if the yield changes implied by the forward rates are
subsequently realized, all government bonds, regardless of maturity,
earn the same holding-period return. In addition, all self-financed
positions of government bonds (such as long a barbell versus short a
bullet) earn a return of 0%; that is, they break even. In contrast, if the
yield curve remains unchanged over a year, each n-year zero earns the
corresponding one-year forward rate f,,; 5. This can be seen from
Equation (2) when m = n-1; 1+f, |, equals (14s,)"/(1+s . ))™1, which is the
holding-period return from buying an n-year zero at rate s,, and selling it
one year later at rate s, ;. Thus, the one-year forward rate equals a zero's
horizon return for an unchanged yield curve (see Appendix C for details).

6 An aliernative interpretation is also possible, Instead of viewing f; , as the break-even selling rate of the two-year
zero in one year's time. we can view it as the break-even reinvestment rate of the one-year zero over the second year.
In the first case. we equate the uncertain one-year return of the two-year zero with the known return of a
(horizon-matching) one-year zero. In the second case. we equate the uncertain two-year return of a
roll-over-one-year-zeros strategy with the known return of a two-year zero.
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MAIN INFLUENCES ON THE YIELD CURVE SHAPE
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In this section, we describe some economic forces that influence the term
structure of forward rates or, more generally, the yield curve shape. The
three main influences are the market’s rate expectations, the bond risk
premia (expected return differentials across bonds) and the so-called
convexity bias. In fact, these three components fully determine the yield
curve; we will show in later reports that the difference between each
one-year forward rate and the one-year spot rate is approximately equal to
the sum of an expected spot rate change, a bond risk premium and the
convexity bias. We first discuss how each component influences the curve
shape, and then we analyze their combined impact.

Rate Expectations

It is clear that the market’s expectation of future rate changes is an
important determinant of the yield curve shape. For example, a steeply
upward-sloping curve may indicate that the market expects near-term Fed
tightening or rising inflation. However, it may be too restrictive to assume
that the yield differences across bonds with different maturities only reflect
the market’s rate expectations. The well-known pure expectations
hypothesis has such an extreme implication. The pure expectations
hypothesis asserts that all government bonds have the same near-term
expected return (as the nominally riskless short-term bond) because the
return-seeking activity of risk-neutral traders removes all expected return
differentials across bonds. Near-term expected returns are equalized if
all bonds that have higher yields than the short-term rate are expected
to suffer capital losses that offset their yield advantage. When the
market expects an increase in bond yields, the current term structure
becomes upward-sloping so that any long-term bond’s yield advantage and
expected capital loss (due to the expected yield increase) exactly offset
each other. In other words, if investors expect that their long-term bond
investments will lose value because of an increase in interest rates, they
will require a higher initial yield as a compensation for duration extension.
Conversely, expectations of yield declines and capital gains will lower
current long-term bond yields below the short-term rate, making the term
structure inverted.

The same logic — that positive (negative) initial yield spreads offset
expected capital losses (gains) to equate near-term expected returns — also
holds for combinations of bonds, including duration-neutral yield curve
positions. One example is a trade that benefits from the flattening of the
yield curve between two- and ten-year maturities: selling a unit of the
two-year bond, buying a duration-weighted amount of the ten-year bond
and putting the remaining proceeds from the sale to "cash” (very short-term
bonds). Given the typical concave yield curve shape (as a function of
duration), such a curve flattening position earns a negative carry.” The
trade will be profitable only if the curve flattens enough to offset the
impact of the negative carry. Implied forward rates indicate how much
flattening (narrowing of the two- to ten-year spread) is needed for the trade
to break even.

In the same way as the market’s expectations regarding the future level of
rates influence the steepness of today’s yield curve, the market’s
expectations regarding the future steepness of the yield curve influence the

7 A concave shape means that the (upward-sloping) yield curve is steeper at the front end than at the long end. The
yield loss of moving from the two-year bond to cash produces a greater yield loss than the yield gain achieved by
moving from the two-year bond (o the ten-year bond. Thus. the yield earned from the combination of cash and tens is
lower than the foregone yield from twos.



curvature of today’s yield curve. If the market expects more curve
flattening, the negative carry of the flattening trades needs to increase (to
offset the expected capital gains), making today’s yield curve more
concave (curved). Figure 2 illustrates these points. This figure plots coupon
bonds’ yields against their durations or, equivalently, zeros” yields against
their maturities, given various rate expectations. Ignoring the bond risk
premia and convexity bias, if the market expects no change in the level or
slope of the curve, today’s yield curve will be horizontal. If the market
expects a parallel rise in rates over the next year but no reshaping,
today’s yield curve will be linearly increasing (as a function of duration).
If the market expects rising rates and a flattening curve, today’s yield
curve will be increasing and concave (as a function of duration).8

Figure 2.Yield Curves Given the Market's Various Rate Expectations
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Bond Risk Premium

A key assumption in the pure expectations hypothesis is that all
government bonds, regardless of maturity, have the same expected return.
In contrast, many theories and empirical evidence suggest that expected
returns vary across bonds. We define the bond risk premium as a
longer-term bond’s expected one-period return in excess of the one-period
bond’s riskless return. A positive bond risk premium would tend to make
the yield curve slope upward. However, various theories disagree about the
sign (+/-), the determinants and the constancy (over time) of the bond risk
premium. The classic liquidity premium hypothesis argues that most
investors dislike short-term fluctuations in asset prices; these investors will
hold long-term bonds only if they offer a positive risk premium as a
compensation for their greater return volatility. Also some modern asset
pricing theories suggest that the bond risk premium should increase with a
bond’s duration, its return volatility or its covariance with market wealth.
In contrast, the preferred habitat hypothesis argues that the risk premium
may decrease with duration; long-duration liability holders may perceive
the long-term bond as the riskless asset and require higher expected returns
for holding short-term assets. While academic analysis focuses on
risk-related premia, market practitioners often emphasize other factors that
cause expected return differentials across the yield curve. These include

8 Part 2 of this scries. Market's Rate Expectations and Forward Rates. discusses these issues in detail.
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liquidity differences between market sectors, institutional restrictions and
supply and demand effects. We use the term ''bond risk premium"
broadly to encompass all expected return differentials across bonds,
including those caused by factors unrelated to risk.

Historical data on U.S. Treasury bonds provide evidence about the
empirical behavior of the bond risk premium. For example, the fact that
the Treasury yield curve has been upward sloping nearly 90% of the time
in recent decades may reflect the impact of positive bond risk premia.
Historical average returns provide more direct evidence about expected
returns across maturities than do historical yields. Even though weekly and
monthly fluctuations in bond returns are mostly unexpected, the impact of
unexpected yield rises and declines should wash out over a long sample
period. Therefore, the historical average returns of various maturity sectors
should reflect the long-run expected returns.

Figure 3 shows the empirical average return curve as a function of average
duration and contrasts it to one theoretical expected return curve, one that
increases linearly with duration. The theoretical bond risk premia are
measured in Figure 3 by the difference between the annualized expected
returns at various duration points and the annualized return of the riskless
one-month bill (the leftmost point on the curve). Similarly, the empirical
bond risk premia are measured by the historical average bond returns at
various durations in excess of the one-month bill.? Historical experience
suggests that the bond risk premia are not linear in duration, but that
they increase steeply with duration in the front end of the curve and
much more slowly after two years. The concave shape may reflect the
demand for long-term bonds from pension funds and other long-duration
liability holders.

Figure 3. Theoretical and Empirical Bond Risk Premia
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9 The empirical bond risk premia are computed based on monthly returns of various maturity-subsector portfolios of
Treasury bills or bonds between 1970 and 1994. This period does not have an obvious bearish or bullish bias because
long-term yields were at roughly similar level in the end of 1994 us they were in the beginning of 1970. Figure 3 plots
arithmetic average annual returns on average durations. The geometric average returns would be a bit lower. and the
curve would be essentially flat after two years,



Figure 3 may give us the best empirical estimates of the long-run average
bond risk premia at various durations. However, empirical studies also
suggest that the bond risk premia are not constant but vary over time.
That is, it is possible to identify in advance periods when the near-term
bond risk premia are abnormally high or low. These premia tend to be high
after poor economic conditions and low after strong economic conditions.
A possible explanation for such countercyclic variation in the bond risk
premium is that investors become more risk averse when their wealth is
relatively low, and they demand larger compensation for holding risky
assets such as long-term bonds.10

Convexity Bias

The third influence on the yield curve — the convexity bias — is probably
the least well known. Different bonds have different convexity
characteristics, and the convexity differences across maturities can give rise
to (offsetting) yield differences. In particular, long-term zeros exhibit very
high convexity (see top panel of Figure 4), which tends to depress their
yields. Convexity bias refers to the impact these convexity differences have
on the yield curve shape.

Convexity is closely related to the nonlinearity in the bond price-yield
relationship. All noncallable bonds exhibit positive convexity; their prices
rise more for a given yield decline than they fall for a similar yield
increase. All else being equal, positive convexity is a desirable
characteristic because it increases a bond’s return (relative to return in the
absence of convexity) whether yields go up or down — as long as they
move somewhere. Because positive convexity can only improve a bond’s
performance (for a given yield), more convex bonds tend to have lower
yields than less convex bonds with the same duration.!! In other words,
investors tend to demand less yield if they have the prospect of improving
their returns as a result of convexity. Investors are primarily interested in
expected returns, and these high-convexity bonds can offer a given
expected return at a lower yield level.

10 parts 3 and 4 of this series describe the empirical behavior of the bond risk premia. Does Duration Extension
Enhance Long-Term Expected Returns? focuses on the long-run average return differentials across bonds with different
maturities. Forecasting U.S. Bond Returns focuses on the near-term expected return differentials across bonds and on
the time-variation in the bond risk premia.

1 The degree of convexity varies across bonds. mainly depending on their option characteristics and durations.
Embedded short options decrease convexity. For bonds without embedded options. convexity increases roughly as a
square of duration (see Figure 4. top panel). There also are convexity differences between bonds that have the same
duration. A barbell position (with very dispersed cash flows) exhibits more convexity than a duration-matched bullet
bond. The reason is that a yield rise reduces the relative weight of the barbell's longer cash flows (because their
present values decline more than those of the shorter cash flows). shortening the barbell’s duration. The inverse relation
between duration and yield level increases a barbell’s convexity, limiting its losses when yields rise and enhancing its
gains when yields decline. Of all bonds with the same duration. a zero has the smallest convexity because its cash
flows are not dispersed: thus. its Macaulay duration does not vary with the yield level.
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Figure 4. Convexity and the Yield Curve
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Note: Volatility of annual yield changes is assumed to be 100 basis points. Thus, the convexity bias is
-0.5 * the zero’s convexity * 1.

The lower panel of Figure 4 illustrates the pure impact of convexity on the
curve shape by plotting the spot rate curve and the curve of one-year
forward rates when all bonds have the same expected return (8%) and the
short-term rates are expected to remain at the current level. With no bond
risk premia and no expected rate changes, one might expect these curves to
be horizontal at 8%. Instead, they slope down at an increasing pace
because lower yields are needed to offset the convexity advantage of
longer-duration bonds and thereby to equate the near-term expected
returns across bonds.!2 Short-term bonds have little convexity; therefore,
there is little convexity bias at the front end of the yield curve, but
convexity can have a dramatic impact on the curve shape at very long
durations. Convexity bias can be one of the main reasons for the typical
concave yield curve shape (that is, for the tendency of the curve to flatten
or invert at long durations).

The value of convexity increases with the magnitude of yield changes.
Therefore, increasing volatility should make the overall yield curve
shape more concave (curved) and widen the spreads between more and
less convex bonds (duration-matched coupon bonds versus zeros and
barbells versus bullets).!3

12 Convexity bias is closely related to the distinction between different versions of the pure expectations hypothesis.
Above. we referred to the pure expectations hypothesis. In fact. alternative versions of this hypothesis exist that are not
exactly consistent with each other. The local expectations hypothesis (LEH) assumes that "all bonds earn the same
expected return over the next period” while the unbiased expectations hypothesis (UEH) assumes that "forward rates
equal expected spot rates.” In Figure 4 (lower panel). the LEH is assumed to hold: thus. UEH is not exactly true. The
expected future short rates are flat at 8% even though the curve of one-year forward rates is inverted. In yield terms,
the difference between the LEH and the UEH is the convexity bias.

13 punt 5 of this series. Convexiry Bias and the Yield Curve. discusses these topics in more detail.
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Putting the Pieces Together

Of course, all three forces influence bond yields simultaneously, making
the task of interpreting the overall yield curve shape quite difficult. A
steeply upward-sloping curve can reflect either the market’s
expectations of rising rates or high required risk premia. A strongly
humped curve (that is, high curvature) can reflect the market’s
expectations of either curve flattening or high volatility (which makes
convexity more valuable), or even the concave shape of the risk premium
curve.

In theory, the yield curve can be neatly decomposed into expectations, risk
premia and convexity bias. In reality, exact decomposition is not possible
because the three components vary over time and are not directly
observable but must be estimated.!* Even though an exact decomposition is
not possible, the analysis in this and subsequent reports should give
investors a framework for interpreting various yield curve shapes. These
reports will characterize the behavior of rate expectations, risk premia and
convexity bias; show how they influence the curve; and evaluate the
magnitude of their impact using historical data. Furthermore, our survey of
earlier literature and our new empirical work will evaluate which theories
and market myths are correct (consistent with data) and which are false.
The main conclusions are as follows:

¢ We often hear that "forward rates show the market’s expectations of
future rates." However, this statement is only true if no bond risk
premia exist and the convexity bias is very small.!> If the goal is to
infer expected short-term rates one or two years ahead, the convexity bias
is so small that it can be ignored. In contrast, our empirical analysis shows
that the bond risk premia are important at short maturities. Therefore, if the
forward rates are used to infer the market’s near-term rate expectations,
some measures of bond risk premia should be subtracted from the
forwards, or the estimate of the market’s rate expectations will be strongly
upward biased.

* The traditional term structure theories assume a zero risk premium (pure
expectations hypothesis) or a nonzero but constant risk premium (liquidity
premium hypothesis, preferred habitat hypothesis) which is inconsistent
with historical data. According to the pure expectations hypothesis, an
upward-sloping curve should predict increases in long-term rates, so that a
capital loss offsets the long-term bonds’ yield advantage. However,
empirical evidence shows that, on average, small declines in long-term
rates, which augment the long-term bonds’ yield advantage, follow
upward-sloping curves. The steeper the yield curve is, the higher the
expected bond risk premia. This finding clearly violates the pure
expectations hypothesis and supports hypotheses about time-varying
risk premia.

* Modern term structure models make less restrictive assumptions than the
traditional theories above. Yet, many popular one-factor models assume
that bonds with the same duration earn the same expected return. Such an
assumption implies that duration-neutral positions with more or less
convexity earn the same expected return (because a yield disadvantage

14 10 Jater papers, we will show how interest rate expectations can be measured using survey data. how bond risk
premia can be estimated using historical return data and how the convexity bias can be inferred using option prices,
Alternatively. all three components can be estimated from the yield curve if one is willing to impose the structure of
some term structure model (with its possibly unrealistic assumptions).

15 A related assertion claims that if near-term expected returns were not equal across bonds. it would imply the
existence of riskless arbitrage opportunities. This assertion is erroncous. It is true that if forward contracts were traded
assets. arbitrage forces would require their pricing to be consistent with zero prices according to Equation (2).
However. the arbitrage argument says nothing about the economic determinants of the zero prices themselves. such as
rate expectations or risk premia. The bond market’s performance in 1994 shows that buying long-term bonds is not
riskless even if they have higher expected returns than short-term bonds.
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exactly offsets any convexity advantage). However, if the market values
very highly the insurance characteristics of positively convex positions,
more convex positions may earn lower expected returns. Our analysis of
the empirical performance of duration-neutral barbell-bullet trades will
show that, in the long run, barbells tend to marginally underperform
bullets.

USING FORWARD

"~ Salomon Brothers

RATE ANALYSIS IN YIELD CURVE TRADES

Recall that if the pure expectations hypothesis holds, all bond positions
have the same near-term expected return. In particular, an upward-sloping
yield curve reflects expectations of rising rates and capital losses, and
convexity is priced so that a yield disadvantage exactly offsets the
convexity advantage. In such a world, yields do not reflect value, no trades
have favorable odds and active management can add value only if an
investor has truly superior forecasting ability. Fortunately, the real world
is not quite like this theoretical world. Empirical evidence (presented in
parts 2-4 of this series of reports) shows that expected returns do vary
across bonds. The main reason is probably that most investors exhibit risk
aversion and preferences for other asset characteristics; moreover, investor
behavior may not always be fully rational. Therefore, yields reflect value
and certain relative value trades have favorable odds.

The previous section provided a framework for thinking about the term
structure shapes. In this section, we describe practical applications —
different ways to use forward rates in yield curve trades. The first approach
requires strong subjective rate views and faith in one’s forecasting ability.

Forwards as Break-Even Rates for Active Yield Curve Views

The forward rates show a path of break-even future rates and spreads. This
path provides a clear yardstick for an active portfolio manager’s
subjective yield curve scenarios and yield path forecasts. It incorporates
directly the impact of carry on the profitability of the trade. For example, a
manager should take a bearish portfolio position only if he expects rates to
rise by more than what the forwards imply. However, if he expects rates to
rise by less than what the forwards imply (that is, by less than what is
needed to offset the positive carry), he should take a bullish portfolio
position. If the manager’s forecast is correct, the position will be profitable.
In contrast, managers who take bearish portfolio positions whenever they
expect bond yields to rise — ignoring the forwards — may find that their
positions lose money, because of the negative carry, even though their rate
forecasts are correct.

One positive aspect about the role of forward rates as break-even rates is
that it does not depend on assumptions regarding expectations, risk premia
or convexity bias. The rules are simple. If forward rates are realized, all
positions earn the same return. If yields rise by more than the forwards
imply, bearish positions are profitable and bullish positions lose money. If
yields rise by less than the forwards imply, the opposite is true. Similar
statements hold for any yield spreads and related positions, such as
curve-flattening positions.

Figure 5 shows the U.S. par yield curve and the implied par curves three
months forward and 12 months forward based on the Salomon Brothers
Treasury Model as of March 31, 1995. If we believe that forward rates
only reflect the market’s rate expectations, a comparison of these curves
tells us that the market expects rates to rise and the curve to flatten over
the next year. Alternatively, the implied yield rise may reflect a bond risk
premium and the implied curve flattening may reflect the value of
convexity. Either way, the forward yield curves reflect the break-even
levels between profits and losses.



Figure 5. Current and Forward Par Yield Curves, as of 31 Mar 95
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The information in the forward rate structure can be expressed in several
ways. Figure 5 is useful for an investor who wants to contrast his
subjective view of the future yield curve with an objective break-even
curve at some future horizon. Another graph may be more useful for an
investor who wants to see the break-even future path of any
constant-maturity rate (instead of the whole curve) and contrast it with his
own forecast, which may be based on a macroeconomic forecast or on the
subjective view about the speed of Fed tightening. As an example, Figure 6
shows such a break-even path of future three-month rates at the end of
March 1995.16 To add perspective, the graph also contains the historical
path of the three-month rate over the past eight years and the break-even
path of the future three-month rates at the end of 1994 when the Treasury
market sentiment was much more bearish.

Figure 6. Historical Three-Month Rates and Implied Forward Three-Month Rate Path, as of 30 Dec 94
and 31 Mar 95
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16 Note that the first point in cach implied forward par curve in Figure 5 is the implied forward three-month rate at a

given future date. Therefore. the forward path in Figure 6 can be constructed by tracing through the three-month points
in the three curves of Figure 5 and through similar curves at other horizons. Because Figure 6 depicts a rate path over
time. the x-axis is calendar years and not maturity.
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Forwards as Indicators of Cheap Maturity Sectors

The other ways to use forwards require less subjective judgment than the
first one. As a simple example, the forward rate curve can be used to
identify cheap maturity sectors visually. Abnormally high forward rates are
more visible than high spot or par rates because the latter are averages of
forward rates.

Figure 7 shows one real-world example from the beginning of this decade
when the par yield curve was extremely flat (although forwards may be
equally useful when the par curve is not flat). Even though the par yield
curve was almost horizontal (all par yields were within 25 basis points),
the range of three-month annualized forward rates was almost 200 basis
points because the forward rate curve magnifies the cheapness/richness of
different maturity sectors. High forward rates identify the six-year sector
and the 12-year sector as cheap, and low forward rates identify the
four-year sector and the nine-year sector as expensive.!7

Figure 7. Par Yields and Three-Month Forward Rates, as of 2 Jan 90
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Once an investor has identified a sector with abnormally high forward rates
(for example, between nine and 12 years), he can exploit the cheapness of
this sector by buying a bond that matures at the end of the period (12
years) and by selling a bond that matures at the beginning of the period
(nine years). If equal market values of these bonds are bought and sold, the
position is exposed to a general increase in rates and a steepening yield
curve. More elaborate trades can be constructed (for example, by selling
both the nine-year and 15-year bonds against the 12-year bonds with
appropriate weights) to retain level and slope neutrality. To the extent that
bumps and kinks in the forward curve reflect temporary local cheapness,
the trade will earn capital gains when the forward curve becomes flatter
and the cheap sector richens (in addition to the higher yield and rolldown
the position earns). In the example of Figure 7, such "richening" actually
did happen over the next three months.

17 Forward rates are also very low at the long maturities. but this characteristic probably reflects the convexity bias.
Forward rates are downward-biased estimates of expected returns because they ignore the convexity advantage which is
especially large at long maturities.
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Forwards as Relative Value Tools for Yield Curve Trades

Above, forwards are used quite loosely to identify cheap maturity sectors.
A more formal way to use forwards is to construct quantitative cheapness
indicators for duration-neutral flattening trades, such as barbell-bullet
trades. We first introduce some concepts with an example of a
market-directional trade.

When the yield curve is upward sloping, long-term bonds’ yield advantage
over the riskless short-term bond provides a cushion against rising yields.
In a sense, duration extensions are "cheap" when the yield curve is very
steep and the cushion (positive carry) is large. These trades only lose
money if capital losses caused by rising rates offset the initial yield
advantage. Moreover, the longer-term bonds’ rolling yield advantages!8
over the short-term bond are even larger than their yield advantages. The
one-year forward rate (f,.;,) is, by construction, equal to the n-year
zero’s rolling yield (see Appendix C). Thus, it is a direct measure of the
n-year zero's rolling yield advantage. (Another forward-related measure,
the change in the n-1 year spot rate implied by the forwards (f} , -s,.1),
tells how much the yield curve has to shift to offset this advantage and to
equate the holding-period returns of the n-year zero and the one-year zero.)

Because one-period forward rates measure zeros’ near-term expected
returns, they can be viewed as indicators of cheap maturity sectors. The
use of such cheapness indicators does not require any subjective interest
rate view. Instead, it requires a belief, motivated by history, that an
unchanged yield curve is a good base case scenario.!? If this is true,
long-term bonds have higher (lower) near-term expected returns than
short-term bonds when the forward rate curve is upward sloping
(downward sloping). In the long run, a strategy that adjusts the portfolio
duration dynamically based on the curve shape should earn a higher
average return than constant-duration strategies.?0

Similar analysis holds for curve-flattening trades. Recall that when the
yield curve is concave as a function of duration, any duration-neutral
flattening trade earns a negative carry. Higher concavity (curvature) in the
yield curve indicates less attractive terms for a flattening trade (larger
negative carry) and more "implied flattening” by the forwards (which is
needed to offset the negative carry). Therefore, the amount of spread
change implied by the forwards is a useful cheapness indicator for
yield curve trades at different parts of the curve. If the implied change is
historically wide, the trade is expensive, and vice versa.

Figure 8 shows an example of a recent situation in which the flattening
trades were extremely expensive. At the end of December 1994, the
three-month to two-year sector of the Treasury curve was very steep (a
spread of 200 basis points) and the two- to 30-year sector was quite flat (a
spread of 20 basis points). The high curvature indicated strong flattening
expectations — forwards implied an inversion of the two- to 30-year
spread by March — or high expected volatility (high value of convexity).

18 Ax bonds age. they roll down the upward-sloping yield curve and earn some rolldown return (capital gain due to
this yield change} if the yield curve remains unchanged. A bond’s rolling yicld. or horizon return. includes the yield

and the rolldown return given a scenario of no change in the yield curve.
19 The one-period forward rate can proxy for the near-term expected return — atbeit with a downward-bias because it
ignores the value of convexity — if the current yield curve is not expected to change. Empirical studies show that the

assumption of an unchanged curve is more reulistic than the assumption that forward rates reflect expected future
yields. Historically. current spot rates predict future spot rates better than current forward rates do because the yield
changes implied by the forwards have not been realized. on average.

20 part 4 of this serics. Forecasting U.S. Bond Returns. evaluates the historical performance of dynamic strategies that
exploit the predictability of long-term bonds™ near-term returns. The dynamic strategies have consistently outperformed
static strategies that do not actively adjust the portfolio duration.
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The barbell (of the 30-year bond and three-month bill) over the
duration-matched two-year bullet would become profitable only if the curve
flattened even more than the forwards implied or if a sudden increase in
volatility occurred. Purely on yield grounds, the two-year bullet (a
steepening position) appeared cheap in an absolute comparison (across
bonds) and in a historical comparison (over time). With the benefit of
hindsight, we know that the cheapness indicator gave a correct signal. The
two-year bullet outperformed various duration-matched barbell positions
substantially over the next quarter as it earned large capital gains in
addition to its high initial yield and rolldown advantage. By the end of
March, the front end of the curve had flattened by 108 basis points and the
long end had steepened by 45 basis points. Figure 8 illustrates the decline
in curvature by plotting the Treasury on-the-run yield curves (as a function
of duration) on December 30 and on March 31. In later reports, we will
show how to use forward rate analysis to evaluate opportunities like this.

Figure 8. On-the-Run Yield Curves, as of 30 Dec 94 and 31 Mar 95
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Duration (Dur}
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NITIONS USED IN THE SERIES
E

Market price of a bond.

Market price of an n-year zero.

Coupon rate (in percentage; other rates are expressed as a decimal).

Annualized yield to maturity (YTM) of a bond.

Time to maturity of a bond (in years).

Annualized n-year spot rate; the discount rate of an n-year zero.

Annualized n-1 year spot rate next period; superscript * denotes next period’s (year’s) value.

Realized change in the n-1 year spot rate between today and next period (= ¥4 - Sp.1)

Annualized forward rate between maturities m and n.

One-year forward rate between maturities (n-1) and n; also the n-year zero’s rolling yield.

Annualized forward rate between maturities 1 and n; also called the implied n-1 year spot rate one year
forward.

Implied change in the n-1 year spot rate between today and next period (= fy , - s,.4); also called the
break-even yield change (over the next period) implied by the forwards.

Implied change in the yield of an n-year zero, a specific bond, over the next period (= f; , - ;).
Forward-spot premium (FSP, = f_; , - s1).

Realized holding-period return of an n-year zero over one period (year).

A bond’s horizon return given a scenario of unchanged yield curve; sum of yield and rofldown return.
Expected return of a long-term bond over the next period (year) in excess of the riskless one-period bond;
for the n-year zero, BRP, = E(h, - $4).

Realized one-year holding-period return of a long-term bond in excess of the one-year bond; also called
excess bond return; realized BRP, = h, - s;.

Slope coefficient in a regression of the annual realized BRP, on FSP,.

Yield difference between a long-term bond and a short-term bond; for the n-year zero, = s, - $;.
Difference between a long-term bond yield and a proxy for expected inflation; our proxy is the recently
published year-on-year consumer price inflation rate.

Ratio of exponentially weighted past weaith to the current wealth; we proxy wealth W by the stock market
level; = (Wyq + 0.9*Wyp + 0.92 *Wi3 + ) 0.1/W,

Measure of a bond price’s interest rate sensitivity; Dur = -(dP/dy) * (1/P)

Measure of the nonlinearity in a bond'’s P/y -relation; Cx = (d®P/dy?) * (1/P)

Impact of convexity on the curve of one-year forward rates; CB, = -0.5 * Cx, * (Volatility of As, )?
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Figure 9. Par, Spot and One-Year Forward Rates

Maturity Par Rate Spot Rate Forward Rate
1 6.00% 6.00% 6.00%
2 8.00 8.08 10.20
3 9.50 9.72 13.07
4 10.50 10.86 14.36
5 11.00 11.44 13.77
6 11.25 11.71 13.10
7 11.38 11.83 12.55
8 11.44 11.88 12.20
9 11.48 11.89 11.97
10 11.50 11.89 11.93

RELATIONS

-0

BE EN SPOT RATES, FORWARD RATES,
AND BOND RETURNS
Investors often want to make quick "back-of-the-envelope" calculations
with spot rates, forward rates and bond returns. In this appendix, we
discuss some simple relations between these variables, beginning with a
useful approximate relation between spot rates and one-year forward rates.
These relations are discussed in more detail in the appendix of Market's
Rate Expectations and Forward Rates. Equation (2) showed exactly how
the forward rate between years m and n is related to m- and n-year spot
rates. Equation (8) shows the same relation in an approximate but simpler
form; this equation ignores nonlinear effects such as the convexity bias.
The relation is exact if spot rates and forward rates are continuously
compounded.

_ns; — msy,
n—-m (8)

fm.n
For one-year forward rates (m = n-1), Equation (8) can be simplified to

fnfl.n =S, + (n'l) * (Sn - Sp-1). (9)

Equation (9) shows that the forward rate is equal to an n-year zero’s
one-year horizon return given an unchanged yield curve scenario: a sum of
the initial yield and the rolldown return (the zero’s duration at horizon
(n-1) multiplied by the amount the zero rolls down the yield curve as it
ages). This horizon return is often called the rolling yield. Thus, the
one-year forward rates proxy for near-term expected returns at different
parts of the yield curve if the yield curve is expected to remain unchanged.
We can gain intuition about the equality of the one-year forward rate and
the rolling yield by examining the n-year zero’s realized holding-period
return h, over the next year, in Equation (10). The zero earns its initial
yield s, plus a capital gain/loss, which is approximated by the product of
the zero’s year-end duration and its realized yield change.

hn = Syt (n'l) * (Sn - S*n—]) (10)
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B. CALCULATING SPOT AND FORWARD RATES WHEN PAR
ARE KNOWN

na
-]
»

A simple example illustrates how spot rates and forward rates are
computed on a coupon date when the par curve is known (and coupon
payments and compounding frequency are annual). The basis of the
procedure is the fact that a bond’s price will be the same, the sum of the
present values of its cash flows, whether it is priced via yield to maturity
(Equation (4)) or via the spot rate curve (Equation (5)):

p-_¢ ,_C€ . _C+100

L+y (I+y2? 7 (1+y) 4)
e N C N +C+1oo
Tl (T4s)2 T (1 +syn (5)

where P is the bond price, C is the coupon rate (in percentage), y is the
annual yield to maturity (expressed as a decimal), s is the annual spot rate
(expressed as a decimal), and n is the time to maturity (in years).

We only show the computation for the first two years, which have par
rates of 6% and 8%. For the first year, par, spot, and forward rates are
equal (6%). Longer spot rates are solved recursively using known values of
the par bond’s price and cash flows and the previously solved spot rates.
Every par bond’s price is 100 (par) by construction; thus, its yield (the par
rate) equals its coupon rate. Because the two-year par bond’s market price
(100) and cash flows (8 and 108) are known, as is the one-year spot rate
(6%), it is easy to solve for the two-year spot rate as the only unknown in
the following equation:

c ., Cc _ 8 108
T+s, (I+s)?2 1.06 (1+s)2° 6)

100 =

A little manipulation shows that the solution for s, is 8.08%. Equation (6)
also can be used to compute par rates when only spot rates are known. If
the spot rates are known, the coupon rate C, which equals the par rate, is
the only unknown in Equation (6).

The forward rate between one and two years is computed using Equation
(3) and the known one-year and two-year spot rates.

(1 + 82)2 _ (1.0808)2 _
T+s, - 106 1020 (7

(I +1,)=

The solution for f;; is 10.20%. The other spot rates and one-year forward
rates (f 3, f34, etc.) in Figure 9 are computed in the same way. These
numbers are shown graphically in Figure 1.
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where s*, | is the n-1 year spot rate next year. If the yield curve follows a
random walk, the best forecast for s* | is (today’s) s, ;. Therefore, the
n-year zero’s expected holding period return equals the one-year forward
rate in Equation (9). The key question is whether it is more reasonable to
assume that the current spot rates are the optimal forecasts of future spot
rates than to assume that forwards are the optimal forecasts. We present
later empirical evidence which shows that the "random walk" forecast of
an unchanged yield curve is more accurate than the forecast implied by the
forwards.

Equation (9) shows that the (one-year) forward rate curve lies above the
spot curve as long as the latter is upward sloping (and the rolldown return
is positive). Conversely, if the spot curve is inverted, the rolldown return is
negative, and the forward rate curve lies below the spot curve. If the spot
curve is first rising and then declining, the forward rate curve crosses it
from above at its peak. Finally, the forward rate curve can become
downward sloping even when the spot curve is upward sloping, if the spot
curve’s slope is first steep and then flattens (reducing the rolldown return).
The calculations below illustrate this point and show that the
approximation is good — within a few basis points from the correct values
(10.20-13.07-14.36-13.77) in Figure 9:

fi, =808 +1* (8.08 - 6.00) = 8.08 + 2.08 = 10.16;

f53 =972+ 2 *(9.72 - 8.08) = 9.72 + 3.28 = 13.00;

f34 = 10.86 + 3 * (10.86 - 9.72) = 10.86 + 3.42 = 14.28; and
fas5=11.44 + 4 * (11.44 - 10.86) = 11.44 + 2.32 = 13.76.
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