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I N T R O D U C T I O N

How can we interpret the shape (steepness and curvature) of the yield
curve on a given day? And how does the yield curve evolve over time?
In this report, we examine these two broad questions about the yield curve
behavior. We have shown in earlier reports that the market’s rate
expectations, required bond risk premia and convexity bias determine the
yield curve shape. Now we discuss various economic hypotheses and
empirical evidence about the relative roles of these three determinants in
influencing the curve steepness and curvature. We also discuss term
structure models that describe the evolution of the yield curve over time
and summarize relevant empirical evidence.

The key determinants of the curve steepness, or slope, are the market’s
rate expectations and the required bond risk premia. The pure
expectations hypothesis assumes that all changes in steepness reflect the
market’s shifting rate expectations, while the risk premium hypothesis
assumes that the changes in steepness only reflect changing bond risk
premia. In reality, rate expectations and required risk premia influence the
curve slope. Historical evidence suggests that above-average bond
returns, and not rising long rates, are likely to follow abnormally steep
yield curves. Such evidence is inconsistent with the pure expectations
hypothesis and may reflect time-varying bond risk premia.
Alternatively, the evidence may represent irrational investor behavior and
the long rates’ sluggish reaction to news about inflation or monetary
policy.

The determinants of the yield curve’s curvature have received less
attention in earlier research. It appears that the curvature varies
primarily with the market’s curve reshaping expectations. Flattening
expectations make the yield curve more concave (humped), and steepening
expectations make it less concave or even convex (inversely humped). It
seems unlikely, however, that the average concave shape of the yield curve
results from systematic flattening expectations. More likely, it reflects the
convexity bias and the apparent required return differential between
barbells and bullets. If convexity bias were the only reason for the concave
average yield curve shape, one would expect a barbell’s convexity
advantage to exactly offset a bullet’s yield advantage, in which case
duration-matched barbells and bullets would have the same expected
returns. Historical evidence suggests otherwise: In the long run, bullets
have earned slightly higher returns than duration-matched barbells.
That is, the risk premium curve appears to be concave rather than
linear in duration. We discuss plausible explanations for the fact that
investors, in the aggregate, accept lower expected returns for barbells than
for bullets: the barbell’s lower return volatility (for the same duration); the
tendency of a flattening position to outperform in a bearish environment;
and the insurance characteristic of a positively convex position.

Turning to the second question, we describe some empirical
characteristics of the yield curve behavior that are relevant for
evaluating various term structure models. The models differ in their
assumptions regarding the expected path of short rates (degree of mean
reversion), the role of a risk premium, the behavior of the unexpected rate
component (whether yield volatility varies over time, across maturities or
with the rate level), and the number and identity of factors influencing
interest rates. For example, the simple model of parallel yield curve shifts
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is consistent with no mean reversion in interest rates and with constant
bond risk premia over time. Across bonds, the assumption of parallel shifts
implies that the term structure of yield volatilities is flat and that rate shifts
are perfectly correlated (and, thus, driven by one factor).

Empirical evidence suggests that short rates exhibit quite slow mean
reversion, that required risk premia vary over time, that yield
volatility varies over time (partly related to the yield level), that the
term structure of basis-point yield volatilities is typically inverted or
humped, and that rate changes are not perfectly correlated — but two
or three factors can explain 95%-99% of the fluctuations in the yield
curve.

In Appendix A, we survey the broad literature on term structure models
and relate it to the framework described in this series. It turns out that
many popular term structure models allow the decomposition of yields to a
rate expectation component, a risk premium component and a convexity
component. However, the term structure models are more consistent in
their analysis of relations across bonds because they specify exactly how a
small number of systematic factors influences the whole yield curve. In
contrast, our approach analyzes expected returns, yields and yield
volatilities separately for each bond. In Appendix B, we discuss the
theoretical determinants of risk premia in multi-factor term structure
models and in modern asset pricing models.

H O W S H O U L D W E I N T E R P R E T T H E Y I E L D C U R V E S T E E P N E S S ?

The steepness of yield curve primarily reflects the market’s rate
expectations and required bond risk premia because the third
determinant, convexity bias, is only important at the long end of the curve.
A particularly steep yield curve may be a sign of prevalent expectations for
rising rates, abnormally high bond risk premia, or some combination of the
two. Conversely, an inverted yield curve may be a sign of expectations for
declining rates, negative bond risk premia, or a combination of declining
rate expectations and low bond risk premia.

We can map statements about the curve shape to statements about the
forward rates. When the yield curve is upward sloping, longer bonds have
a yield advantage over the risk-free short bond, and the forwards "imply"
rising rates. The implied forward yield curves show the break-even levels
of future yields that would exactly offset the longer bonds’ yield advantage
with capital losses and that would make all bonds earn the same
holding-period return.

Because expectations are not observable, we do not know with certainty
the relative roles of rate expectations and risk premia. It may be useful to
examine two extreme hypotheses that claim that the forwards reflect
only the market’s rate expectations or only the required risk premia. If
the pure expectations hypothesis holds, the forwards reflect the market’s
rate expectations, and the implied yield curve changes are likely to be
realized (that is, rising rates tend to follow upward-sloping curves and
declining rates tend to succeed inverted curves). In contrast, if the risk
premium hypothesis holds, the implied yield curve changes are not likely
to be realized, and higher-yielding bonds earn their rolling-yield
advantages, on average (that is, high excess bond returns tend to follow
upward-sloping curves and low excess bond returns tend to succeed
inverted curves).
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1 Another way to get around the problem that the market’s rate expectations are unobservable is to assume that a
survey consensus view can proxy for these expectations. Comparing the forward rates with survey-based rate
expectations indicates that changing rate expectations and changing bond risk premia induce changes in the curve
steepness (see Figure 9 in Part 2 of this series and Figure 4 in Part 6).
2 The deviations from the pure expectations hypothesis are statistically significant when we regress excess bond returns
on the steepness of the forward rate curve. Moreover, as long as the correlations in Figure 1 are zero or below, long
bonds tend to earn at least their rolling yields.

Empirical Evidence
To evaluate the above hypotheses, we compare implied forward yield
changes (which are proportional to the steepness of the forward rate curve)
to subsequent average realizations of yield changes and excess bond
returns.1 In Figure 1, we report (i) the average spot yield curve shape,
(ii) the average of the yield changes that the forwards imply for various
constant-maturity spot rates over a three-month horizon, (iii) the average of
realized yield changes over the subsequent three-month horizon, (iv) the
difference between (ii) and (iii), or the average "forecast error" of the
forwards, and (v) the estimated correlation coefficient between the implied
yield changes and the realized yield changes over three-month horizons.
We use overlapping monthly data between January 1968 and December
1995 — deliberately selecting a long neutral period in which the beginning
and ending yield curves are very similar.

Figure 1. Evaluating the Implied Treasury Forward Yield Curve’s Ability to Predict Actual Rate
Changes, 1968-95

Notes: Data source for all figures is Salomon Brothers (although Figures 3 and 11 have additional sources). The spot
yield curves are estimated based on Treasury on-the-run bill and bond data using a relatively simple interpolation
technique. (Given that the use of such synthetic bond yields may induce some noise to our analysis, we have ensured
that our main results also hold for yield curves and returns of actually traded bonds, such as on-the-run coupon bonds
and maturity-subsector portfolios.) The implied rate change is the difference between the constant-maturity spot rate
that the forwards imply in a three-month period and the current spot rate. The implied and realized spot rate changes
are computed over a three-month horizon using (overlapping) monthly data. The forecast error is their difference.

3 Mo. 6 Mo. 9 Mo. 1 Yr. 2 Yr. 3 Yr. 4 Yr. 5 Yr. 6 Yr.

Mean Spot Rate 7.04 7.37 7.47 7.57 7.86 8.00 8.12 8.25 8.32
Mean Implied Rate Change 0.65 0.32 0.27 0.23 0.14 0.12 0.11 0.08 0.07
Mean Realized Rate Change 0.003 0.001 0.000 0.000 0.001 0.001 0.001 0.002 0.002
Mean Forecast Error 0.65 0.32 0.27 0.23 0.14 0.12 0.11 0.08 0.07
Correlation Between Implied and
Realized Rate Changes -0.04 -0.08 -0.10 -0.08 -0.10 -0.13 -0.13 -0.12 -0.13

Figure 1 shows that, on average, the forwards imply rising rates,
especially at short maturities — simply because the yield curve tends to be
upward sloping. However, the rate changes that would offset the yield
advantage of longer bonds have not materialized, on average, leading to
positive forecast errors. Our unpublished analysis shows that this
conclusion holds over longer horizons than three months and over various
subsamples, including flat and steep yield curve environments. The fact
that the forwards tend to imply too high rate increases is probably caused
by positive bond risk premia.

The last row in Figure 1 shows that the estimated correlations of the
implied forward yield changes (or the steepness of the forward rate curve)
with subsequent yield changes are negative. These estimates suggest that, if
anything, yields tend to move in the opposite direction than that which
the forwards imply. Intuitively, small declines in long rates have followed
upward-sloping curves, on average, thus augmenting the yield advantage of
longer bonds (rather than offsetting it). Conversely, small yield increases
have succeeded inverted curves, on average. The big bull markets of the
1980s and 1990s occurred when the yield curve was upward sloping, while
the big bear markets in the 1970s occurred when the curve was inverted.
We stress, however, that the negative correlations in Figure 1 are quite
weak; they are not statistically significant.2
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3 Figure 7 in Part 2 shows that the forwards have predicted future excess bond returns better than they have
anticipated future yield changes. Figures 2-4 in Part 4 show more general evidence of the forecastability of excess
bond returns. In particular, combining yield curve information with other predictors can enhance the forecasts. The
references in the cited reports provide formal evidence about the statistical significance of the predictability findings.

Many market participants believe that the bond risk premia are constant
over time and that changes in the curve steepness, therefore, reflect shifts
in the market’s rate expectations. However, the empirical evidence in
Figure 1 and in many earlier studies contradicts this conventional wisdom.
Historically, steep yield curves have been associated more with high
subsequent excess bond returns than with ensuing bond yield
increases.3

One may argue that the historical evidence in Figure 1 is no longer
relevant. Perhaps investors forecast yield movements better nowadays,
partly because they can express their views more efficiently with easily
tradable tools, such as the Eurodeposit futures. Some anecdotal evidence
supports this view: Unlike the earlier yield curve inversions, the most
recent inversions (1989 and 1995) were quickly followed by declining
rates. If market participants actually are becoming better forecasters,
subperiod analysis should indicate that the implied forward rate
changes have become better predictors of the subsequent rate changes;
that is, the rolling correlations between implied and realized rate changes
should be higher in recent samples than earlier. In Figure 2, we plot such
rolling correlations, demonstrating that the estimated correlations have
increased somewhat over the past decade.

Figure 2. 60-Month Rolling Correlations Between the Implied Forward Rate Changes and Subsequent
Spot Rate Changes, 1968-95

Notes: The Treasury spot yield curves are estimated based on on-the-run bill and bond data. The implied rate change
is the difference between the constant-maturity spot rate that the forwards imply in a three-month period and the
current spot rate. The implied and realized spot rate changes are computed over a three-month horizon using
(overlapping) monthly data. The rolling correlations are based on the previous 60 months’ data.
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In Figure 3, we compare the forecasting ability of Eurodollar futures and
Treasury bills/notes in the 1987-95 period. The average forecast errors are
smaller in the Eurodeposit futures market than in the Treasury market,
reflecting the flatter shape of the Eurodeposit spot curve (and perhaps the
systematic "richness" of the shortest Treasury bills). In contrast, the
correlations between implied and realized rate changes suggest that the
Treasury forwards predict future rate changes slightly better than the
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4 However, some other evidence is more consistent with the expectations hypothesis than the short-run behavior of
long rates. Namely, long rates often are reasonable estimates of the average level of the short rate over the life of the
long bond (see John Campbell and Robert Shiller: "Yield Spreads and Interest Rate Movements: A Bird’s Eye View,"
Review of Economic Studies, 1991).

Eurodeposit futures do. A comparison with the correlations in Figure 1 (the
long sample period) shows that the front-end Treasury forwards, in
particular, have become much better predictors over time. For the
three-month rates, this correlation rises from -0.04 to 0.45, while for the
three-year rates, this correlation rises from -0.13 to 0.01. Thus, recent
evidence is more consistent with the pure expectations hypothesis than the
data in Figure 1, but these relations are so weak that it is too early to tell
whether the underlying relation actually has changed. Anyway, even the
recent correlations suggest that bonds longer than a year tend to earn their
rolling yields.

Figure 3. Evaluating the Implied Eurodeposit and Treasury Forward Yield Curve’s Ability to Predict
Actual Rate Changes, 1987-95

Notes: Data sources are Salomon Brothers and Chicago Mercantile Exchange. The Eurodeposit spot yield curves are
estimated based on monthly Eurodeposit futures prices between 1987 and 1995. The Treasury spot yield curves are
estimated based on on-the-run bill and bond data. (Note that the price-yield curve of Eurodeposit futures is linear;
thus, the convexity bias does not influence the futures-based spot curve. However, convexity bias is worth only a
couple of basis points for the two-year zeros.) For further details, see Figure 1.

3 Mo. 6 Mo. 9 Mo. 1 Yr. 2 Yr. 3 Yr. 4 Yr. 5 Yr. 6 Yr.

Eurodeposits
Mean Spot Rate 6.32 6.40 6.48 6.58 6.98 — — — —
Mean Implied Rate Change 0.16 0.18 0.19 0.20 0.20
Mean Realized Rate Change -0.02 -0.02 -0.02 -0.02 -0.03
Mean Forecast Error 0.18 0.20 0.21 0.22 0.23
Correlation Between Implied and Realized
Rate Changes 0.39 0.18 0.11 0.06 0.02

Treasuries
Mean Spot Rate 5.67 5.90 6.01 6.13 6.64 6.86 7.07 7.29 7.41
Mean Implied Rate Change 0.47 0.30 0.27 0.28 0.19 0.16 0.15 0.12 0.11
Mean Realized Rate Change -0.01 -0.01 -0.01 -0.01 -0.02 -0.02 -0.03 -0.03 -0.03
Mean Forecast Error 0.47 0.30 0.28 0.29 0.21 0.18 0.18 0.14 0.14
Correlation Between Implied and Realized
Rate Changes 0.45 0.32 0.28 0.17 0.04 0.01 -0.01 0.01 0.01

Interpretations
The empirical evidence in Figure 1 is clearly inconsistent with the pure
expectations hypothesis.4 One possible explanation is that curve
steepness mainly reflects time-varying risk premia, and this effect is
variable enough to offset the otherwise positive relation between curve
steepness and rate expectations. That is, if the market requires high risk
premia, the current long rate will become higher and the curve steeper than
what the rate expectations alone would imply — the yield of a long bond
initially has to rise so high that it provides the required bond return by its
high yield and by capital gain caused by its expected rate decline. In this
case, rate expectations and risk premia are negatively related; the steep
curve predicts high risk premia and declining long rates. This story could
explain the steepening of the front end of the U.S. yield curve in spring
1994 (but not on many earlier occasions when policy tightening caused
yield curve flattening).

The long-run average bond risk premia are positive (see Part 3 of this
series and Figure 11 in this report) but the predictability evidence suggests
that bond risk premia are time-varying rather than constant. Why should
required bond risk premia vary over time? In general, an asset’s risk
premium reflects the amount of risk and the market price of risk (for
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details, see Appendix B). Both determinants can fluctuate over time and
result in predictability. They may vary with the yield level
(rate-level-dependent volatility) or market direction (asymmetric volatility
or risk aversion) or with economic conditions. For example, cyclical
patterns in required bond returns may reflect wealth-dependent
variation in the risk aversion level — "the cycle of fear and greed."

Figure 4 shows the typical business cycle behavior of bond returns and
yield curve steepness: Bond returns are high and yield curves are steep
near troughs, and bond returns are low and yield curves are
flat/inverted near peaks. These countercyclic patterns probably reflect the
response of monetary policy to the economy’s inflation dynamics, as well
as time-varying risk premia (high risk aversion and required risk premia in
"bad times" and vice versa). Figure 4 is constructed so that if bonds tend
to earn their rolling yields, the two lines are perfectly aligned. However,
the graph shows that bonds tend to earn additional capital gains (beyond
rolling yields) from declining rates near cyclical troughs — and capital
losses from rising rates near peaks. Thus, realized bond returns are related
to the steepness of the yield curve and — in addition — to the level of
economic activity.

Figure 4. Average Business Cycle Pattern of U.S. Realized Bond Risk Premium and Curve Steepness,
1968-95

Notes: Each line is constructed by computing the average value of a series in eight "stage of the business cycle"
subsamples. Peak and trough subsamples refer to seven-month windows around the cyclical peaks and troughs, as
defined by the National Bureau of Economic Research. In addition, each business cycle is split into three thirds of
expansion and three thirds of contraction, and each month is assigned to one of these six subsamples. The spacing of
subsamples in the x-axis is partially adjusted for the fact that expansions tend to last much longer than contractions.
The forward-spot premium measures the steepness of the forward rate curve (the deannualized one-month rate 23
months forward minus the current one-month rate). The realized bond risk premium measures the monthly excess
return of a synthetic two-year zero-coupon bond over a one-month bill. If the steepness of the forward rate curve is a
one-for-one predictor of future excess returns, the two lines are perfectly aligned.
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These empirical findings motivate the idea that the required bond risk
premia vary over time with the steepness of the yield curve and with some
other variables. In Part 4 of this series, we show that yield curve steepness
indicators and real bond yields, combined with measures of recent stock
and bond market performance, are able to forecast up to 10% of the
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5 Our forecasting analysis focuses on excess return over the short rate, not the whole bond return. We do not discuss
the time-variation in the short rate. The nominal short rate obviously reflects expected inflation and the required real
short rate, both of which vary over time and across countries. From an international perspective, nominally riskless
short-term rates in high-yielding countries may reflect expected depreciation and/or high required return (foreign
exchange risk premium). In such countries, yield curves often are flat or inverted; investors earn a large compensation
for holding the currency but little additional reward for duration extension.
6 See Kenneth Froot’s article "New Hope for the Expectations Hypothesis of the Term Structure of Interest Rates,"
Journal of Finance, 1989, and Werner DeBondt and Mary Bange’s article "Inflation Forecast Errors and Time
Variation in Term Premia," Journal of Financial and Quantitative Analysis, 1992.
7 Other explanations to the apparent return predictability include "data mining" and "peso problem." Data mining or
overfitting refers to situations in which excessive analysis of a data sample leads to spurious empirical findings. Peso
problems refer to situations where investors appear to be making systematic forecast errors because the realized
historical sample is not representative of the market’s (rational) expectations. In the two decades between 1955 and
1975, Mexican interest rates were systematically higher than the U.S. interest rates although the peso-dollar exchange
rate was stable. Because no devaluation occurred within this sample period, a statistician might infer that investors’
expectations were irrational. This inference is based on the assumption that the ex post sample contains all the events
that the market expects, with the correct frequency of occurrence. A more reasonable interpretation is that investors
assigned a small probability to the devaluation of peso throughout this period. In fact, a large devaluation did occur in
1976, justifying the earlier investor concerns. Similar peso problems may occur in bond market analysis, for example,
caused by unrealized fears of hyperinflation. That is, investors appear to be making systematic forecast errors when in
fact investors are rational and the statistician is relying on benefit of hindsight. Similar problems occur when rational
agents gradually learn about policy changes, and the statistician assumes that rational agents should know the eventual
policy outcome during the sample period. However, while peso problems and learning could in principle induce some
systematic forecast errors, it is not clear whether either phenomenon could cause exactly the type of systematic errors
and return predictability that we observe.

variation in monthly excess bond returns. That is, bond returns are
partly forecastable. For quarterly or annual horizons, the predictable part is
even larger.5

If market participants are rational, bond return predictability should
reflect time-variation in the bond risk premia. Bond returns are
predictably high when bonds command exceptionally high risk premia —
either because bonds are particularly risky or because investors are
exceptionally risk averse. Bond risk premia may also be high if increased
supply of long bonds steepens the yield curve and increases the required
bond returns. An alternative interpretation is that systematic forecasting
errors cause the predictability. If forward rates really reflect the market’s
rate expectations (and no risk premia), these expectations are irrational.
They tend to be too high when the yield curve is upward sloping and too
low when the curve is inverted. The market appears to repeat costly
mistakes that it could avoid simply by not trying to forecast rate shifts.
Such irrational behavior is not consistent with market efficiency.

What kind of expectational errors would explain the observed patterns
between yield curve shapes and subsequent bond returns? One explanation
is a delayed reaction of the market’s rate expectations to inflation news or
to monetary policy actions. For example, if good inflation news reduces the
current short-term rate but the expectations for future rates react sluggishly,
the yield curve becomes upward-sloping, and subsequently the bond returns
are high (as the impact of the good news is fully reflected in the rate
expectations and in the long-term rates).6

Because expectations are not observable, we can never know to what
extent the return predictability reflects time-varying bond risk premia and
systematic forecast errors.7 Academic researchers have tried to develop
models that explain the predictability as rational variation in required
returns. However, yield volatility and other obvious risk measures seem
to have little ability to predict future bond returns. In contrast, the
observed countercyclic patterns in expected returns suggest rational
variation in the risk aversion level — although they also could reflect
irrational changes in the market sentiment. Studies that use survey data to
proxy for the market’s expectations conclude that risk premia and irrational
expectations contribute to the return predictability.
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8 We provide empirical justification to a strategy that a naive investor would choose: Go for yield. A more
sophisticated investor would say that this activity is wasteful because well-known theories — such as the pure
expectations hypothesis in the bond market and the unbiased expectations hypothesis in the foreign exchange market —
imply that positive yield spreads only reflect expectations of offsetting capital losses. Now we remind the sophisticated
investor that these well-known theories tend to fail in practice.

Investment Implications
If expected bond returns vary over time, historical average returns contain
less information about future returns than do indicators of the prevailing
economic environment, such as the information in the current yield curve.
In principle, the information in the forward rate structure is one of the
central issues for fixed-income investors. If the forwards (adjusted for the
convexity bias) only reflect the market’s rate expectations and if these
expectations are unbiased (they are realized, on average), then all
government bond strategies would have the same near-term expected
return. Yield-seeking activities (convergence trades and relative value
trades) would be a waste of time and trading costs. Empirical evidence
discussed above suggests that this is not the case: Bond returns are
partially predictable, and yield-seeking strategies are profitable in the long
run.8 However, it pays to use other predictors together with yields and to
diversify across various positions, because the predictable part of bond
returns is small and uncertain.

In practice, the key question is perhaps not whether the forwards
reflect rate expectations or risk premia but whether actual return
predictability exists and who should exploit it. No predictability exists if
the forwards (adjusted for the convexity bias) reflect unbiased rate
expectations. If predictability exists and is caused by expectations that are
systematically wrong, everyone can exploit it. If predictability exists and is
caused by rational variation in the bond risk premia, only some investors
should take advantage of the opportunities to enhance long-run average
returns; many others would find higher expected returns in "bad times" no
more than a fair compensation for the greater risk or the higher risk
aversion level. Only risk-neutral investors and atypical investors whose risk
perception and risk tolerance does not vary synchronously with those of the
market would want to exploit any profit opportunities — and these
investors would not care whether rationally varying risk premia or the
market’s systematic forecast errors cause these opportunities.

H O W S H O U L D W E I N T E R P R E T T H E Y I E L D C U R V E C U R V A T U R E ?

The market’s curve reshaping expectations, volatility expectations and
expected return structure determine the curvature of the yield curve.
Expectations for yield curve flattening imply expected profits for
duration-neutral long-barbell versus short-bullet positions, tending to make
the yield curve concave (thus, the yield disadvantage of these positions
offsets their expected profits from the curve flattening). Expectations for
higher volatility increase the value of convexity and the expected profits of
these barbell-bullet positions, again inducing a concave yield curve shape.
Finally, high required returns of intermediate bonds (bullets) relative to
short and long bonds (barbells) makes the yield curve more concave.
Conversely, expectations for yield curve steepening or for low volatility,
together with bullets’ low required returns, can even make the yield curve
convex.

In this section, we analyze the yield curve curvature and focus on two key
questions: (1) How important are each of the three determinants in
changing the curvature over time?; and (2) why is the long-run
average shape of the yield curve concave?
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Empirical Evidence
Some earlier studies suggest that the curvature of the yield curve is closely
related to the market’s volatility expectations, presumably due to the
convexity bias. However, our empirical analysis indicates that the
curvature varies more with the market’s curve-reshaping expectations
than with the volatility expectations. The broad curvature of the yield
curve varies closely with the steepness of the curve, probably reflecting
mean-reverting rate expectations.

Figure 5 plots the Treasury spot curve when the yield curve was at its
steepest and at its most inverted in recent history and on a date when the
curve was extremely flat. This graph suggests that historically low short
rates have been associated with steep yield curves and high curvature
(concave shape), while historically high short rates have been associated
with inverted yield curves and negative curvature (convex shape).

Figure 5. Treasury Spot Yield Curves in Three Environments
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Figure 6. Correlation Matrix of Yield Curve Level, Steepness and Curvature, 1968-95

Notes: The Treasury spot yield curves are estimated based on on-the-run bill and bond data (see Figure 1). The
correlations are between the monthly changes in spot rates (or their spreads). Steepness refers to the yield spread
between the six-year spot rate and the three-month spot rate. Curvature refers to the yield spread between a synthetic
bullet (three-year zero) and a duration-matched barbell (0.5 * three-month zero + 0.5 * 5.75-year zero).

3-Mo. Rate 6-Yr. Rate Steepness Curvature

3-Mo. Spot Rate 1.00
6-Yr. Spot Rate 0.70 1.00
Steepness -0.43 -0.04 1.00
Curvature -0.20 0.10 0.79 1.00

The correlation matrix of the monthly changes in yield levels, curve
steepness and curvature in Figure 6 confirms these relations. Steepness
measures are negatively correlated with the short rate levels (but almost
uncorrelated with the long rate levels), reflecting the higher likelihood of
bull steepeners and bear flatteners than bear steepeners and bull flatteners.
However, we focus on the high correlation (0.79) between the changes
in the steepness and the changes in the curvature. This relation has a
nice economic logic. Our curvature measure can be viewed as the yield
carry of a curve-steepening position, a duration-weighted bullet-barbell
position (long a synthetic three-year zero and short equal amounts of a
three-month zero and a 5.75-year zero). If market participants have
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mean-reverting rate expectations, they expect yield curves to revert to a
certain average shape (slightly upward sloping) in the long run. Then,
exceptionally steep curves are associated with expectations for subsequent
curve flattening and for capital losses on steepening positions. Given the
expected capital losses, these positions need to offer an initial yield pickup,
which leads to a concave (humped) yield curve shape. Conversely,
abnormally flat or inverted yield curves are associated with the market’s
expectations for subsequent curve steepening and for capital gains on
steepening positions. Given the expected capital gains, these positions can
offer an initial yield giveup, which induces a convex (inversely humped)
yield curve.

Figure 7 illustrates the close comovement between our curve steepness
and curvature measures. The mean-reverting rate expectations
described above are one possible explanation for this pattern. Periods
of steep yield curves (mid-1980s and early 1990s) are associated with high
curvature and, thus, a large yield pickup for steepening positions,
presumably to offset their expected losses as the yield curve flattens. In
contrast, periods of flat or inverted curves (1979-81, 1989-90 and 1995) are
associated with low curvature or even an inverse hump. Thus, barbells can
pick up yield and convexity over duration-matched bullets, presumably to
offset their expected losses when the yield curve is expected to steepen
toward its normal shape.

Figure 7. Curvature and Steepness of the Treasury Curve, 1968-95

Notes: Curvature A refers to the yield spread between a long bullet (three-year zero) and a duration-matched short
barbell (0.5 * three-month zero + 0.5 * 5.75-year zero). Curvature B refers to the yield spread between a bullet
(ten-year on-the-run bond) and a duration-matched barbell (duration-weighted combination of two-year and 30-year
on-the-run bonds); this series begins in 1982. Steepness refers to the yield spread between the six-year spot rate and
the three-month spot rate.
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The expectations for mean-reverting curve steepness influence the broad
curvature of the yield curve. In addition, the curvature of the front end
sometimes reflects the market’s strong view about near-term monetary
policy actions and their impact on the curve steepness. Historically, the
Federal Reserve and other central banks have tried to smooth interest rate
behavior by gradually adjusting the rates that they control. Such a
rate-smoothing policy makes the central bank’s actions partly predictable
and induces a positive autocorrelation in short-term rate behavior. Thus, if
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the central bank has recently begun to ease (tighten) monetary policy, it is
reasonable to expect the monetary easing (tightening) to continue and the
curve to steepen (flatten).

In the earlier literature, the yield curve curvature has been mainly
associated with the level of volatility. Litterman, Scheinkman and Weiss
("Volatility and the Yield Curve," Journal of Fixed Income, 1991) pointed
out that higher volatility should make the yield curve more humped
(because of convexity effects) and that a close relation appeared to exist
between the yield curve curvature and the implied volatility in the Treasury
bond futures options. However, Figure 8 shows that the relation between
curvature and volatility was close only during the sample period of the
study (1984-88). Interestingly, no recessions occurred in the mid-1980s,
the yield curve shifts were quite parallel and the flattening/steepening
expectations were probably quite weak. The relation breaks down before
and after the 1984-88 period — especially near recessions, when the Fed is
active and the market may reasonably expect curve reshaping. For
example, in 1981 yields were very volatile but the yield curve was convex
(inversely humped); see Figures 5 and 13. It appears that the market’s
expectations for future curve reshaping are more important determinants of
the yield curve curvature than are its volatility expectations (convexity
bias). The correlations of our curvature measures with the curve
steepness are around 0.8 while those with the implied option volatility
are around 0.1. Therefore, it is not surprising that the implied volatility
estimates that are based on the yield curve curvature are not closely related
to the implied volatilities that are based on option prices. Using the yield
curve shape to derive implied volatility can result in negative volatility
estimates; this unreasonable outcome occurs in simple models when the
expectations for curve steepening make the yield curve inversely humped
(see Part 5 of this series).

Figure 8. Curvature and Volatility in the Treasury Market, 1982-95

Notes: Curvature A refers to the yield spread between a duration-matched long bullet (three-year zero) and short barbell
(0.5 * three-month zero + 0.5 * 5.75-year zero). Curvature B refers to the yield spread between a bullet (ten-year
on-the-run bond) and a duration-matched barbell (duration-weighted combination of two-year and 30-year on-the-run
bonds). Volatility refers to the implied volatility of at-the-money options of the Treasury bond futures; these options
began to trade in 1982.
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9 Our discussion will focus on the concavity of the spot curve. Some authors have pointed out that the coupon bond
yield curve tends to be concave (as we see in Figure 9) and have tried to explain this fact in the following way: If the
spot curve were linearly upward-sloping and the par yields were linearly increasing in duration, the par curve would be
a concave function of maturity because the par bonds’ durations are concave in maturity. However, this is only a
partial explanation to the par curve’s concavity because Figure 9 shows that the average spot curve too is concave in
maturity/duration.

Now we move to the second question "Why is the long-run average
shape of the yield curve concave?" Figure 9 shows that the average
par and spot curves have been concave over our 28-year sample period.9
Recall that the concave shape means that the forwards have, on average,
implied yield curve flattening (which would offset the intermediate bonds’
initial yield advantage over duration-matched barbells). Figure 10 shows
that, on average, the implied flattening has not been matched by
sufficient realized flattening. Not surprisingly, flattenings and steepenings
tend to wash out over time, whereas the concave spot curve shape has been
quite persistent. In fact, a significant positive correlation exists between the
implied and the realized curve flattening, but the average forecast errors in
Figure 10 reveal a bias of too much implied flattening. This conclusion
holds when we split the sample into shorter subperiods or into subsamples
of a steep versus a flat yield curve environment or a rising-rate versus a
falling-rate environment.

Figure 9. Average Yield Curve Shape, 1968-95
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Figure 10. Evaluating the Implied Forward Yield Curve’s Ability to Predict Actual Changes in the Spot
Yield Curve’s Steepness, 1968-95

6 Mo.-3 Mo. 1 Yr.-6 Mo. 3 Yr.-1 Yr. 6 Yr.-3 Yr. 6 Yr.-3 Mo.

Mean Spread (Steepness) 0.33 0.19 0.44 0.32 1.28
Mean Implied Spread Change -0.33 -0.09 -0.11 -0.05 -0.58
Mean Realized Spread Change -0.002 -0.001 0.001 0.001 -0.001
Mean Forecast Error -0.33 -0.09 -0.11 -0.05 -0.58
Correlation Between Implied and Realized
Spread Changes 0.53 0.45 0.20 0.03 0.21
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Figure 10 shows that, on average, the capital gains caused by the curve
flattening have not offset a barbell’s yield disadvantage (relative to a
duration-matched bullet). A more reasonable possibility is that the
barbell’s convexity advantage has offset its yield disadvantage. We can
evaluate this possibility by examining the impact of convexity on realized
returns over time. Empirical evidence suggests that the convexity advantage
is not sufficient to offset the yield disadvantage (see Figure 12 in Part 5 of
this series). Alternatively, we can examine the shape of historical
average returns because the realized returns should reflect the
convexity advantage. This convexity effect is certainly a partial
explanation for the typical yield curve shape — but it is the sole effect
only if duration-matched barbells and bullets have the same expected
returns. Equivalently, if the required bond risk premium increases linearly
with duration, the average returns of duration-matched barbells and bullets
should be the same over a long neutral period (because the barbells’
convexity advantage exactly offsets their yield disadvantage). The average
return curve shape in Figure 1, Part 3 and the average barbell-bullet returns
in Figure 11, Part 5 suggest that bullets have somewhat higher long-run
expected returns than duration-matched barbells. We can also report the
historical performance of synthetic zero positions over the 1968-95 period:
The average annualized monthly return of a four-year zero is 9.14%, while
the average returns of increasingly wide duration-matched barbells are
progressively lower (3-year and 5-year 9.05%, 2-year and 6-year 9.00%,
1-year and 7-year 8.87%). Overall, the typical concave shape of the yield
curve likely reflects the convexity bias and the concave shape of the
average bond risk premium curve rather than systematic flattening
expectations, given that the average flattening during the sample is zero.

Interpretations
The impact of curve reshaping expectations and convexity bias on the yield
curve shape are easy to understand, but the concave shape of the bond risk
premium curve is more puzzling. In this subsection, we explore why
bullets should have a mild expected return advantage over
duration-matched barbells. One likely answer is that duration is not
the relevant risk measure. However, we find that average returns are
concave even in return volatility, suggesting a need for a multi-factor risk
model. We first discuss various risk-based explanations in detail and then
consider some alternative "technical" explanations for the observed average
return patterns.

All one-factor term structure models imply that expected returns should
increase linearly with the bond’s sensitivity to the risk factor. Because
these models assume that bond returns are perfectly correlated, expected
returns should increase linearly with return volatility (whatever the risk
factor is). However, bond durations are proportional to return volatilities
only if all bonds have the same basis-point yield volatilities. Perhaps the
concave shape of the average return-duration curve is caused by (i) a
linear relation between expected return and return volatility and (ii) a
concave relation between return volatility and duration that, in turn,
reflects an inverted or humped term structure of yield volatility (see
Figure 15). Intuitively, a concave relation between the actual return
volatility and duration would make a barbell a more defensive (bearish)
position than a duration-matched bullet. The return volatility of a barbell is
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10 Here is another way of making our point: If short rates are more volatile than long rates, a duration-matched
long-barbell versus short-bullet position would have a negative "empirical duration" or beta (rate level sensitivity). That
is, even though the position has zero (traditional) duration, it tends to be profitable in a bearish environment (when
curve flattening is more likely) and unprofitable in a bullish environment (when curve steepening is more likely). This
negative beta property could explain the lower expected returns for barbells versus duration-matched bullets, if
expected returns actually are linear in return volatility. However, the concave shapes of the average return curves in
Figure 11 imply that even when barbells are weighted so that they have the same return volatility as bullets (and thus,
the barbell-bullet position empirically has zero rate level sensitivity), they tend to have lower returns.

simply a weighted average of its constituents’ return volatilities (given the
perfect correlation); thus, the barbell’s volatility would be lower than that
of a duration-matched bullet.

Figures 13 and 14 will demonstrate that the empirical term structure of
yield volatility has been inverted or humped most of the time. Thus,
perhaps a barbell and a bullet with equal return volatilities (as
opposed to equal durations) should have the same expected return.
However, it turns out that the bullet’s return advantage persists even
when we plot average returns on historical return volatilities. Figure 11
shows the historical average returns of various maturity-subsector portfolios
of Treasury bonds as a function of return volatility. The average returns are
based on two relatively neutral periods, January 1968 to December 1995
and April 1986 to March 1995. We still find that the average return curves
have a somewhat concave shape. Note that we demonstrate the concave
shape in a conservative way by graphing arithmetic average returns; the
geometric average return curves would be even more concave.10

Figure 11. Average Treasury Maturity-Subsector Returns as a Function of Return Volatility

Notes: Data sources are Salomon Brothers, Center of Research for Security Prices at the University of Chicago and
Ibbotson Associates. The curves show the annualized arithmetic averages of monthly returns of various Treasury bill
and bond portfolios as a function of return volatility. The two curves differ in that we can split the Treasury market
into narrower maturity-subsector buckets in the more recent sample. The first three points in each curve correspond to
constant-maturity three-month, six-month, and nine-month bill portfolios. The next four points correspond to
maturity-subsector portfolios of 1-2, 2-3, 3-4, and 4-5 year Treasuries. The last two points in the longer sample
correspond to a 5-10 year bond portfolio and a 20-year bond portfolio. The last nine points in the shorter sample
correspond to maturity-subsector portfolios of 5-6, 6-7, 7-8, 8-9, 9-10, 10-15, 15-20, 20-25, and 25-30 year
Treasuries. Our return calculations ignore the on-the-run bonds’ repo market advantage, partly explaining the low
returns of the 9-10 year and the 25-30 year Treasury portfolios.
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As explained above, one-factor term structure models assume that bond
returns are perfectly correlated. One-factor asset pricing models are
somewhat more general. They assume that realized bond returns are
influenced by only one systematic risk factor but that they also contain a
bond-specific residual risk component (which can make individual bond
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11 Some market participants prefer payoff patterns that provide them insurance. Other market participants prefer to sell
insurance because it provides high current income. Based on the analysis of Andre Perold and William Sharpe
("Dynamic Strategies for Asset Allocation," Financial Analysts Journal, 1989), we argue that following the more
popular strategy is likely to earn lower return (because the price of the strategy will be bid very high). It is likely that
the Treasury market ordinarily contains more insurance seekers than income-seekers (insurance sellers), perhaps leading
to a high price for insurance. However, the relative sizes of the two groups may vary over time. In good times, many
investors reach for yield and don’t care for insurance. In bad times, some of these investors want insurance — after the
accident.

returns imperfectly correlated). Because the bond-specific risk is easily
diversifiable, only systematic risk is rewarded in the marketplace.
Therefore, expected returns are linear in the systematic part of return
volatility. This distinction is not very important for government bonds
because their bond-specific risk is so small. If we plot the average returns
on systematic volatility only, the front end would be slightly less steep
than in Figure 11 because a larger part of short bills’ return volatility is
asset-specific. Nonetheless, the overall shape of the average return curve
would remain concave.

Convexity bias and the term structure of yield volatility explain the
concave shape of the average yield curve partly, but a nonlinear expected
return curve appears to be an additional reason. Figure 11 suggests that
expected returns are somewhat concave in return volatility. That is,
long bonds have lower required returns than one-factor models imply.
Some desirable property in the longer cash flows makes the market
accept a lower expected excess return per unit of return volatility for
them than for the intermediate cash flows. We need a second risk
factor, besides the rate level risk, to explain this pattern. Moreover, this
pattern may teach us something about the nature of the second factor and
about the likely sign of its risk premium. We will next discuss heuristically
two popular candidates for the second factor — interest rate volatility and
yield curve steepness. We further discuss the theoretical determinants of
required risk premia in Appendix B.

Volatility as the second factor could explain the observed patterns if
the market participants, in the aggregate, prefer insurance-type or
"long-volatility" payoffs. Even nonoptionable government bonds have an
optionlike characteristic because of the convex shape of their price-yield
curves. As discussed in Part 5 of this series, the value of convexity
increases with a bond’s convexity and with the perceived level of yield
volatility. If the volatility risk is not "priced" in expected returns (that is, if
all "delta-neutral" option positions earn a zero risk premium), a yield
disadvantage should exactly offset longer bonds’ convexity advantage.
However, the concave shape of the average return curve in Figure 11
suggests that positions that benefit from higher volatility have lower
expected returns than positions that are adversely affected by higher
volatility. Although the evidence is weak, we find the negative sign for the
price of volatility risk intuitively appealing. The Treasury market
participants may be especially averse to losses in high-volatility states,
or they may prefer insurance-type (skewed) payoffs so much that they
accept lower long-run returns for them.11 Thus, the long bonds’ low
expected return could reflect the high value many investors assign to
positive convexity. However, because short bonds exhibit little convexity,
other factors are needed to explain the curvature at the front end of the
yield curve.

Yield curve steepness as the second factor (or short rate and long rate
as the two factors) could explain the observed patterns if
curve-flattening positions tend to be profitable just when investors
value them most. We do not think that the curve steepness is by itself a
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12 Another perspective may clarify our subtle point. Long bonds typically perform well in recessions, but leveraged
extensions of intermediate bonds (that are duration-matched to long bonds) perform even better because their yields
decline more. Thus, the recession-hedging argument cannot easily explain the long bonds’ low expected returns relative
to the intermediate bonds — unless various impediments to leveraging have made the long bonds the best realistic
recession-hedging vehicles.
13 Simple segmentation stories do not explain why arbitrageurs do not exploit the steep slope at the front end and the
flatness beyond two years and thereby remove such opportunities. A partial explanation is that arbitrageurs cannot
borrow at the Treasury bill rate; the higher funding cost limits their profit opportunities. These opportunities also are
not riskless. In addition, while it is likely that supply and demand effects influence maturity-specific required returns
and the yield curve shape in the short run, we would expect such effects to wash out in the long run.

risk factor that investors worry about, but it may tend to coincide with a
more fundamental factor. Recall that the concave average return curve
suggests that self-financed curve-flattening positions have negative
expected returns — because they are more sensitive to the long rates (with
low reward for return volatility) than to the short/intermediate rates (with
high reward for return volatility). This negative risk premium can be
justified theoretically if the flattening trades are especially good hedges
against "bad times." When asked what constitutes bad times, an
academic’s answer is a period of high marginal utility of profits, while a
practitioner’s reply probably is a deep recession or a bear market. The
empirical evidence on this issue is mixed. It is clear that long bonds
performed very well in deflationary recessions (the United States in the
1930s, Japan in the 1990s). However, they did not perform at all well in
the stagflations of the 1970s when the predictable and realized excess bond
returns were negative. Since the World War II, the U.S. long bond
performance has been positively correlated with the stock market
performance — although bonds turned out to be a good hedge during the
stock market crash of October 1987. Turning now to flattening positions,
these have not been good recession hedges either; the yield curves typically
have been flat or inverted at the beginning of a recession and have
steepened during it (see also Figure 4).12 Nonetheless, flattening positions
typically have been profitable in a rising rate environment; thus, they have
been reasonable hedges against a bear market for bonds.

We conclude that risk factors that are related to volatility or curve
steepness could perhaps explain the concave shape of the average return
curve — but these are not the only possible explanations. "Technical" or
"institutional" explanations include the value of liquidity (the ten-year note
and the 30-year bond have greater liquidity and lower transaction costs
than the 11-29 year bonds, and the on-the-run bonds can earn additional
income when they are "special" in the repo market), institutional
preferences (immunizing pension funds may accept lower yield for
"riskless" long-horizon assets, institutionally constrained investors may
demand the ultimate safety of one-month bills at any cost, fewer natural
holders exist for intermediate bonds), and the segmentation of market
participants (the typical short-end holders probably tolerate return volatility
less well than do the typical long-end holders, which may lead to a higher
reward for duration extension at the front end).13

Investment Implications
Bullets tend to outperform barbells in the long run, although not by
much. It follows that as a long-run policy, it might be useful to bias the
investment benchmarks and the core Treasury holdings toward intermediate
bonds, given any duration. In the short run, the relative performance of
barbells and bullets varies substantially — and mainly with the yield
curve reshaping. Investors who try to "arbitrage" between the volatility
implied in the curvature of the yield curve and the yield volatility implied
in option prices will find it very difficult to neutralize the inherent curve
shape exposure in these trades. An interesting task for future research is to
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14 We provide empirical evidence on the historical behavior of nominal interest rates. This evidence is not directly
relevant for evaluating term structure models in some important situations. First, when term structure models are used
to value derivatives in an arbitrage-free framework, these models make assumptions concerning the risk-neutral
probability distribution of interest rates, not concerning the real-world distribution. Second, equilibrium term structure
models often describe the behavior of real interest rates, not nominal rates.
15 Moreover, a model with parallel shifts would offer riskless arbitrage opportunities if the yield curves were flat.
Duration-matched long-barbell versus short-bullet positions with positive convexity could only be profitable (or break
even) because there would be no yield giveup or any possibility of capital losses caused by the curve steepening.
However, the parallel shift model would not offer riskless arbitrage opportunities if the spot curves were concave
(humped) because the barbell-bullet positions’ yield giveup could more than offset their convexity advantage.

study how well barbells’ and bullets’ relative short-run performance can be
forecast using predictors such as the yield curve curvature (yield carry),
yield volatility (value of convexity) and the expected mean reversion in the
yield spread.

H O W D O E S T H E Y I E L D C U R V E E V O L V E O V E R T I M E ?

The framework used in the series Understanding the Yield Curve is very
general; it is based on identities and approximations rather than on
economic assumptions. As discussed in Appendix A, many popular term
structure models allow the decomposition of forward rates into a rate
expectation component, a risk premium component, and a convexity
bias component. However, various term structure models make
different assumptions about the behavior of the yield curve over time.
Specifically, the models differ in their assumptions regarding the number
and identity of factors influencing interest rates, the factors’ expected
behavior (the degree of mean reversion in short rates and the role of a risk
premium) and the factors’ unexpected behavior (for example, the
dependency of yield volatility on the yield level). In this section, we
describe some empirical characteristics of the yield curve behavior that
are relevant for evaluating the realism of various term structure
models.14 In Appendix A, we survey other aspects of the term structure
modelling literature. Our literature references are listed after the
appendices; until then we refer to these articles by author’s name.

The simple model of only parallel shifts in the spot curve makes extremely
restrictive and unreasonable assumptions — for example, it does not
preclude negative interest rates.15 In fact, it is equivalent to the Vasicek
(1977) model with no mean reversion. All one-factor models imply that
rate changes are perfectly correlated across bonds. The parallel shift
assumption requires, in addition, that the basis-point yield volatilities are
equal across bonds. Other one-factor models may imply other
(deterministic) relations between the yield changes across the curve, such
as multiplicative shifts or greater volatility of short rates than of long rates.
Multi-factor models are needed to explain the observed imperfect
correlations across bonds — as well as the nonlinear shape of expected
bond returns as a function of return volatility that was discussed above.

Time-Series Evidence
In our brief survey of empirical evidence, we find it useful to first focus
on the time-series implications of various models and then on their
cross-sectional implications. We begin by examining the expected part of
yield changes, or the degree of mean reversion in interest rate levels
and spreads. If interest rates follow a random walk, the current interest
rate is the best forecast for future rates — that is, changes in rates are
unpredictable. In this case, the correlation of (say) a monthly change in a
rate with the beginning-of-month rate level or with the previous month’s
rate change should be zero. If interest rates do not follow a random walk,
these correlations need not equal zero. In particular, if rates are
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16 As shown in Equation (13) in Appendix A, the short rate volatility in many term structure models can be expressed
as proportional to rγ where is the coefficient of volatility’s sensitivity on the rate level. For example, in the Vasicek
model (additive or normal rate process), γ = 0, while in the Cox-Ingersoll-Ross model (square root process), γ = 0.5.
The Black-Derman-Toy model (multiplicative or lognormal rate process) is not directly comparable but γ ≈ 1. If γ = 0,
the basis-point yield volatility [Vol(∆y)] does not vary with the yield level. If γ = 1, the basis-point yield volatility
varies one-for-one with the yield level — and the relative yield volatility [Vol(∆y/y)] is independent of the yield level
(see Equation (13) in Part 5 of this series).

mean-reverting, the slope coefficient in a regression of rate changes on rate
levels should be negative. That is, falling rates should follow abnormally
high rates and rising rates should succeed abnormally low rates.

Figure 12 shows that interest rates do not exhibit much mean reversion
over short horizons. The slope coefficients of yield changes on yield
levels are negative, consistent with mean reversion, but they are not quite
statistically significant. Yield curve steepness measures are more
mean-reverting than yield levels. Mean reversion is more apparent at the
annual horizon than at the monthly horizon, consistent with the idea that
mean reversion is slow. In fact, yield changes seem to exhibit some
trending tendency in the short run (the autocorrelation between the monthly
yield changes are positive), until a "rubber-band effect" begins to pull
yields back when they get too far from the perceived long-run mean. Such
a long-run mean probably reflects the market’s views on sustainable real
rate and inflation levels as well as a perception that a hyperinflation is
unlikely and that negative nominal interest rates are ruled out (in the
presence of cash currency). If we focus on the evidence from the 1990s
(not shown), the main results are similar to those in Figure 12, but short
rates are more predictable (more mean-reverting and more highly
autocorrelated) than long rates, probably reflecting the Fed’s
rate-smoothing behavior.

Figure 12. Mean Reversion and Autocorrelation of U.S. Yield Levels and Curve Steepness, 1968-95

Notes: These numbers are based on the on-the-run yields of a three-month bill, a two-year note, and a 30-year (or the
longest available) bond. We use 335 monthly observations and 27 annual observations. The mean-reversion coefficient
is the slope coefficient in a regression of each yield change on its beginning-of-period level. The first-order
autocorrelation coefficient is the slope coefficient in a regression of each yield change on the previous period’s yield
change. The (robust) t-statistics measure the statistical significance and the (unadjusted) R2 values measure the
explanatory power in the regression.

3 Mo. 2 Yr. 30 Yr. 2 Yr.-3 Mo. 30 Yr.-2 Yr.
Mon. Ann. Mon. Ann. Mon. Ann. Mon. Ann. Mon. Ann.

Mean-Reversion
Coefficient -0.03 -0.26 -0.02 -0.26 -0.01 -0.20 -0.13 -0.74 -0.06 -0.42

t-statistic (-1.26) (-1.75) (-1.20) (-1.74) (-1.10) (-1.36) (-3.40) (-2.49) (-2.19) (-2.70)
R2 2% 12% 1% 13% 1% 10% 7% 37% 3% 22%
First Autocorrelation
Coefficient 0.10 0.24 0.17 -0.06 0.15 -0.10 -0.12 -0.21 0.08 0.10

t-statistic (0.87) (1.26) (2.46) (-0.39) (2.08) (-0.46) (-1.39) (-1.48) (1.08) (0.56)
R2 1% 6% 3% 1% 2% 1% 1% 4% 1% 1%

Moving to the unexpected part of yield changes, we analyze the
behavior of (basis-point) yield volatility over time. In an influential
study, Chan, Karolyi, Longstaff, and Sanders (1992) show that various
specifications of common one-factor term structure models differ in two
respects: the degree of mean reversion and the level-dependency of yield
volatility. Empirically, they find insignificant mean reversion and
significantly level-dependent volatility — more than a one-for one
relation.16 Moreover, they find that the evaluation of various one-factor
models’ realism depends crucially on the volatility assumption; models that
best fit U.S. data have a level-sensitivity coefficient of 1.5. According to
these models, future yield volatility depends on the current rate level and
nothing else: High yields predict high volatility. Another class of models
— so-called GARCH models — stipulate that future yield volatility
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17 When we estimate the coefficient (yield volatility’s sensitivity to the rate level — see Equation (13) in Appendix A)
using daily changes of the three-month Treasury bill rate, we find that the coefficient falls from 1.44 between 1977-94
to 0.71 between 1983-94. Moreover, when we reestimate the coefficient in a model that accounts for simple GARCH
effects, it falls to 0.37 and 0.17, suggesting little level-dependency. (The GARCH coefficient on the past variance is
0.87 and 0.95 in the two samples, and the GARCH coefficient on the previous squared yield change is 0.02 and 0.03.)
GARCH refers to "generalized autoregressive conditional heteroscedasticity," or more simply, time-varying volatility.
GARCH models or other stochastic volatility models are one way to explain the fact that the actual distribution of
interest rate changes have fatter tails than the normal distribution (that is, that the normal distribution underestimates
the actual frequency of extreme events).

depends on the past volatility: High recent volatility and large recent
shocks (squared yield changes) predict high volatility. Brenner, Harjes and
Kroner (1996) show that empirically the most successful models assume
that yield volatility depends on the yield level and on past volatility.
With GARCH effects, the level-sensitivity coefficient drops to
approximately 0.5. Finally, all of these studies include the exceptional
period 1979-82 which dominates the results (see Figure 13). In this period,
yields rose to unprecedented levels — but the increase in yield volatility
was even more extraordinary. Since 1983, the U.S. yield volatility has
varied much less closely with the rate level.17

Figure 13. 24-Month Rolling Spot Rate Volatilities in the United States

Notes: The graphs plot the annualized volatilities of the monthly basis-point changes in one-year and seven-year spot
rates (and their ratio) over 24-month subperiods.
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A few words about the required bond risk premia. In all one-factor models,
the bond risk premium is a product of the market price of risk, which is
assumed to be constant, and the amount of risk in a bond. Risk is
proportional to return volatility, roughly a product of duration and yield
volatility. Thus, models that assume rate-level-dependent yield volatility
imply that the bond risk premia vary directly with the yield level.
Empirical evidence indicates that the bond risk premia are not constant —
but they also do not vary closely with either the yield level or yield
volatility (see Figure 2 in Part 4). Instead, the market price of risk appears
to vary with economic conditions, as discussed above Figure 4. One point
upon which theory and empirical evidence agree is the sign of the market
price of risk. Our finding that the bond risk premia increase with return
volatility is consistent with a negative market price of interest rate risk.
(Negative market price of risk and negative bond price sensitivity to
interest rate changes together produce positive bond risk premia.) Many



20 Salomon BrothersFebruary 1996

theoretical models, including the Cox-Ingersoll-Ross model, imply that the
market price of interest rate risk is negative as long as changing interest
rates covary negatively with the changing market wealth level.

Cross-Sectional Evidence
We first discuss the shape of the term structure of yield volatilities and its
implications for bond risk measures and later describe the correlations
across various parts of the yield curve. The term structure of basis-point
yield volatilities in Figure 14 is steeply inverted when we use a long
historical sample period. Theoretical models suggest that the inversion
in the volatility structure is mainly due to mean-reverting rate
expectations (see Appendix A). Intuitively, if long rates are perceived as
averages of expected future short rates, temporary fluctuations in the short
rates would have a lesser impact on the long rates. The observation that the
term structure of volatility inverts quite slowly is consistent with
expectations for very slow mean reversion. In fact, after the 1979-82
period, the term structure of volatility has been reasonably flat — as
evidenced by the ratio of short rate volatility to long rate volatility in
Figure 13. The subperiod evidence in Figure 14 confirms that the term
structure of volatility has recently been humped rather than inverted. The
upward slope at the front end of the volatility structure may reflect the
Fed’s smoothing (anchoring) of very short rates while the one- to
three-year rates vary more freely with the market’s rate expectations and
with the changing bond risk premia.

Figure 14. Term Structure of Spot Rate Volatilities in the United States

Notes: Each volatility term structure plots the annualized volatilities of the monthly basis-point changes in
various-maturity spot rates over a given sample period. For example, the three-month rate’s volatility was 2.32% (232
basis points) for the full sample.
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The nonflat shape of the term structure of yield volatility has important
implications on the relative riskiness of various bond positions. The
traditional duration is an appropriate risk measure only if the yield
volatility structure is flat. We pointed out earlier that inverted or humped
yield volatility structures would make the return volatility curve a concave
function of duration. Figure 15 shows examples of flat, humped and
inverted yield volatility structures (upper panel) — and the corresponding
return volatility structures (lower panel). The humped volatility structure
reflects empirical yield volatilities in the 1990s, while the flat and inverted
volatility structures are based on the Vasicek model with mean reversion
coefficients of 0.00, 0.05, and 0.10. The model’s short-rate volatility is
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18 Principal components analysis is used to extract from the data first the systematic factor that explains as much of
the common variation in yields as possible, then a second factor that explains as much as possible of the remaining
variation, and so on. These statistically derived factors are not directly observable — but we can gain insight into each
factor by examining the pattern of various bonds’ sensitivities to it. These factors are not exactly equivalent to the
actual shifts in the level, slope and curvature. For example, the level factor is not exactly parallel, as its shape typically
depends on the term structure of yield volatility. In addition, the statistically derived factors are uncorrelated, by
construction, whereas Figure 6 shows that the actual shifts in the yield curve level, slope and curvature are not
uncorrelated.

calibrated to match that of the three-month rate in the 1990s (77 basis
points or 0.77%). It is clear from this figure that the traditional duration
exaggerates the relative riskiness of long bonds whenever the term
structure of yield volatility is inverted or humped. Moreover, the relative
riskiness will be quite misleading if the assumed volatility structure is
inverted (as in the long sample period in Figure 14) while the actual
volatility structure is flat or humped (as in the 1990s).

Figure 15. Basis-Point Yield Volatilities and Return Volatilities for Various Models

Notes: This figure shows four term structures of annualized basis-point spot yield volatilities and the corresponding
return volatilities. The empirical yield volatilities are based on weekly Treasury market data between 1990-95, while the
three other volatility structures are based on distinct specifications of the Vasicek model — one with no mean
reversion (k=0.0 in Equation (9) in Appendix A, or the world of parallel shifts), another with mild mean reversion
(k=0.05) and a third one with stronger mean reversion (k=0.10). The return volatilities are computed for each
zero-coupon bond by the product of basis-point yield volatility and duration. These return volatilities are proportional to
the factor sensitivities in one-factor models.
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Historical analysis shows that correlations of yield changes across the
Treasury yield curve are not perfect but are typically very high beyond
the money market sector (0.82-0.98 for the monthly changes of the two- to
30-year on-the-run bonds between 1968-95) and reasonably high even for
the most distant points, the three-month bills and 30-year bonds (0.57).
Thus, the evidence is not consistent with a one-factor model, but it appears
that two or three systematic factors can explain 95%-99% of the
fluctuations in the yield curve (see Garbade (1986), Litterman and
Scheinkman (1991), Ilmanen (1992)). Based on the patterns of sensitivities
to each factor across bonds of different maturities, the three most
important factors are often interpreted as the level, slope and
curvature factors.18
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19 This Appendix is an abbreviated version of Iwanowski (1996), an unpublished research piece that is available upon
request. In this survey, we mention several term structure models; a complete reference list can be found after the
appendices.

A P P E N D I X A . A S U R V E Y O F T E R M S T R U C T U R E M O D E L S 1 9

A vast literature exists on quantitative modelling of the term structure of
interest rates. Because of the large number of these models and the fact
that the use of stochastic calculus is needed to derive these models, many
investors view them as inaccessible and not useful for their day-to-day
portfolio management. However, investors use these models extensively in
the pricing and hedging of fixed-income derivative instruments and,
implicitly, when they consider such measures as option-adjusted spreads or
the delivery option in Treasury bond futures. Furthermore, these models
can provide useful insights into the relationships between the expected
returns of bonds of different maturities and their time-series properties.

It is important that investors understand the assumptions and implications
of these models to choose the appropriate model for the particular objective
at hand (such as valuation, hedging or forecasting) and that the features of
the chosen model are consistent with the investor’s beliefs about the
market. Although the models are developed through the use of stochastic
calculus, it is not necessary that the investor have a complete
understanding of these techniques to derive some insight from the models.
One goal of this section is to make these models accessible to the
fixed-income investor by relating them to risk concepts with which he is
familiar, such as duration, convexity and volatility.

Equation (1) in Part 5 of this series gives the expression of the percentage
change in a bond’s price (∆P/P) as a function of changes in its own yield
(∆y):

100 * ∆P/P ≈ - Duration * ∆y + 0.5 * Convexity * (∆y)2 . (1)

This expression, which is derived from the Taylor series expansion of the
price-yield formula, is a perfectly valid linkage of changes in a bond’s own
yield to returns and expected returns through traditional bond risk measures
such as duration and convexity.

One problem with this approach is that every bond’s return is expressed as
a function of its own yield. This expression says nothing about the
relationship between the return of a particular bond and the returns of other
bonds. Therefore, it may have limited usefulness for hedging and relative
valuation purposes. One must impose some simplifying assumptions to
make these equations valid for cross-sectional comparisons. In particular,
more specific assumptions are needed for the valuation of derivative
instruments and uncertain cash flows. Of course, the marginal value of
more sophisticated term structure models depends on the empirical
accuracy of their specification and calibration.

Factor Model Approach
Term structure models typically start with a simple assumption that
the prices of all bonds can be expressed as a function of time and a
small number of factors. For ease of explanation, the analysis is often
restricted to default-free bonds and their derivatives. We first discuss
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20 The subscript refers to the realization of factor F at time t. For convenience, we subsequently drop this subscript.
21 At this point, we refer to "duration" in quotes to signify that this is a duration with respect to the factor and not
necessarily the traditional modified Macaulay duration.

one-factor models which assume that one factor (Ft)20 drives the changes
in all bond prices and the dynamics of the factor is given by the following
stochastic differential equation:

= m(F,t)dt + s(F,t)dz
dF
F

(2)

where F can be any stochastic factor such as the yield on a particular bond
or the real growth rate of an economy, dt is the passage of a small
(instantaneous) time interval, and dz is Brownian motion (a random process
that is normally distributed with a mean of 0 and a standard deviation of

). The letter "d" in front of a variable can be viewed as shorthand for√dt
"change in". Equation (2) is an expression for the percentage change of the
factor which is split into expected and unexpected parts. The "drift" term
m(F,t)dt is the expected percentage change in the factor (over a very short
interval dt). This expectation can change as the factor level changes or as
time passes. In the unexpected part, s(F,t) is the volatility of the factor
(also dependent on the factor level and on time) and dz is Brownian
motion. For now, we leave the expression of the factors as general, but
various one-factor models differ by the specifications of F, m(F,t) and
s(F,t).

Let the price at time t of a zero-coupon bond which pays $1 at time T be
expressed as Pi(F,t,T). Because F is the only stochastic component of Pi,
Ito’s Lemma — roughly, the stochastic calculus equivalent of taking a
derivative — gives the following expression for the dynamics of the bond
price:

= µidt + σidz
dPi (F,t,T)

Pi

(3)

where µi = + m(F,t)F + s(F,t)2 F2∂Pi

∂t
1
Pi

∂Pi

∂F
1
Pi

1
2

∂2Pi

∂F2
1
Pi

and σi = s(F,t)F.
∂Pi

∂F
1
Pi

In this framework, Ito’s Lemma gives us an expression for the percentage
change in price of the bond over the time dt for a given realization of F at
time t. µi is the expected percentage change in the price (drift) of bond i
over the period dt and σi is the volatility of bond i.

The unexpected part of the bond return depends on the bond’s "duration"
with respect to the factor (its factor sensitivity)21 and the unexpected factor
realization. The return volatility of bond i (σi) is the product of its factor
sensitivity and the volatility of the factor.

Equation (3) shows that the decomposition of expected returns in Part 6 of
this series is very general. The expected part of the bond return over dt is
given by the expected percentage price change µi because zero-coupon
bonds do not earn coupon income. Consider the three components of the
expected return:
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(1) The first term is the change in price due to the passage of time.
Because our bonds are zero-coupon bonds, this change (accretion) will
always be positive and represents a "rolling yield" component;

(2) The second term is the expected change in the factor (mF) multiplied
by the sensitivity of the bond’s price to changes in the factor. This price
sensitivity is like "duration" with respect to the relevant factor; and

(3) The third term comprises of the second derivative of the price with
respect to changes in the factor and the variance of the factor. The second
derivative is like "convexity" with respect to the factor.

Suppose we specify the factor F to be the yield on bond i (yi). Then, the
expected change in price of bond i over the short time period (dt) is given
by the familiar equation that we developed in the previous parts of this
series:

(4)

) +E = µidt = + E(∆yi


dPi(y,t,T)

Pi




∂Pi

∂t
1
Pi

∂Pi

∂yi

1
Pi

variance (∆yi)
1
2

∂2Pi

∂yi
2

1
Pi

= Rolling Yieldi - Durationi * E(∆yi) + Convexityi * variance (∆yi)
1
2

where ∆yi is the change in the yield of bond i. We can also use Equation
(4) to similarly link the factor model approach to the decompositions of
forward rates made in the previous parts of this series. It can be shown
(for "time-homogeneous" models) that the instantaneous forward rate T
periods ahead equals the rolling yield component. Therefore, we rewrite
Equation (4) in terms of the forward rate as follows:

(5)

) −fT,T + dt = = E − E(∆yi
∂Pi

∂t
1
Pi



dPi

Pi




∂Pi

∂yi

1
Pi

variance (∆yi)
1
2

∂2Pi

∂yi
2

1
Pi

= Expected Returni + Durationi * E(∆yi) − Convexityi * variance (∆yi)
1
2

The expected return term can be further decomposed into the risk-free
short rate and the risk premium for bond i. Thus, forward rates can be
decomposed into the rate expectation term (drift), a risk premium term and
a convexity bias (or a Jensen’s inequality) term. Other term structure
models contain analogous but more complex terms.

Unfortunately, by defining the one relevant factor to be the bond’s own
yield, Equation (4) only holds for bond i. For any other bond j, the chain
rule in calculus tells us that

− = −∂Pj

∂yi

1
Pi

which equals Durationj only if = 1.∂Pj

∂yj

∂yj

∂yi

1
Pi

∂yj

∂yi

(6)
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22 This is also the framework in which the Black-Scholes model to price equity options is developed.

Therefore, in a one-factor world where yi represents the relevant factor,
Equation (4) only holds for bonds other than bond i if all shifts of the
yield curve are parallel. While this observation suggests that more
sophisticated term structure models are needed for derivatives valuation, it
does not deem useless the framework developed in this series. In particular,
this framework is valuable in applications such as interpreting yield curve
shapes and forecasting the relative performance of various government
bond positions. Such forecasts are not restricted to parallel curve shifts if
we predict separately each bond’s yield change (or if we predict a few
points in the curve and interpolate between them). The problem with using
maturity-specific yield and volatility forecasts is that the consistency of the
forecasts across bonds and the absence of arbitrage opportunities are not
explicitly guaranteed.

Arbitrage-Free Restriction
For the time being, we return to the world where the factor, F, is
unspecified and the change in price (return) of any bond i is given by
Equation (3). How should bonds be priced relative to each other? The first
term of Equation (3) (µidt) is deterministic — that is, we know today what
the value of this component will be at the end of time t+dt. However, the
value of second term (σidz) is unknown until the end of time t+dt. In fact,
in this one-factor framework, this is the only unknown component of any
bond’s returns. If we can form a portfolio whereby we eliminate all
exposure to the one stochastic factor, then the return on the portfolio
is known with certainty. If the return is known with certainty, then it
must earn the riskless rate r or else arbitrage opportunities would
exist.

It also follows that in our one-factor world, the ratio of expected excess
return over the return volatility must be equal for any two bonds to
prevent arbitrage opportunities. This relation must hold for all bonds or
portfolios of bonds, and in Equation (7) below is the value of this ratio,
often known as the "market price of the factor risk".

= = λµ1 − r
σ1

µ2 − r
σ2

(7)

where r is the riskless short rate.

Solutions of the Term Structure Models for Bond Prices
Combining Equations (3) and (7) leads to the following differential
equation:

+ (mF − λs) + s2F2 = rP1.∂P1
∂t

∂P1
∂F

1
2

∂2P1
∂F2

(8)

This differential equation is solved to obtain bond prices and derivatives of
bonds. Virtually all of the existing one-factor term-structure models are
developed in this framework.22 The next step is to impose a set of
boundary conditions specific to the instrument that is being priced and then
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solve the differential equation for P(F, t, T). One boundary condition for
zero-coupon bonds is that the price of the bond at maturity is equal to par
(P(F, T, T) = 100). Another example of a boundary condition is that the
value of a European call option on bonds, at the expiration of the option, is
given by C(t,T,K) = max[P(F,t,T)-K,0]. Various term structure models
differ in the definition of the relevant factor and the specification of its
dynamics. Specifically, the one-factor models differ from each other in
how the variable F and the functions m(F,t) (factor drift) and s(F,t) (factor
volatility) are specified. Different specifications lead to distinct solutions of
Equation (8) and distinct implications for bond prices and yields. In the
rest of this section, we will analyze one such specification to give the
reader an intuitive interpretation of these models, and then we qualitatively
discuss the trade-offs between various popular models.

One Example: The Vasicek Model
Many of the existing term-structure models begin by specifying the one
stochastic factor that affects all bond returns as the riskless interest rate (r)
on an investment that matures at the end of dt. One of the earliest such
model developed by Vasicek (1977) took this approach and specified the
dynamics of the short rate as follows:

dr = k(l − r)dt + sdz. (9)

This fits in the framework of Equation (2) if F is defined to be r and m(r,t)
= (k(l-r))/r and s(r,t)=s/r. The second term indicates that the short rate is
normally distributed with a constant volatility of s which does not
depend on the current level of r. The basis-point yield volatility is the
same regardless of whether the short rate is equal to 5% or 20%. The drift
term requires some interpretation. In the Vasicek model, the short rate
follows a mean-reverting process. This means that there is some long-term
mean level toward which the short rate tends to move. If the current short
rate is high relative to this long-term level, the expected change in the
short-rate is negative. Of course, even if the expected change over the next
period is negative, we do not know for sure that the actual change will be
negative because of the stochastic component. In Equation (9), l is the
long-term level of the short rate and k is the speed of mean-reversion. If
k=0, there is no mean-reversion of the short rate. If k is large, the short
rate reverts to its long-term level quite quickly and the stochastic
component will be small relative to the mean reversion component.

This specification falls into a class of models known as the "affine" yield
class. "Affine" essentially means that all continuously compounded spot
rates are linear in the short rate. Many of the popular one-factor models
belong to this class. For the affine term structure models, the solution of
Equation (8) for zero-coupon bond prices is of the following form:

P(r,t,T) = eA(t,T) − B(t,T)r (10)

Typically, A(r,t,T) and B(r,t,T) are functions of the various parameters
describing the interest rate dynamics such as k, l, s, and λ. It is easy to
show that the "duration" of the zero-coupon bond with respect to the short
rate equals B(t,T). How does this duration measure differ from our
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traditional definition of duration with respect to a bond’s own yield? For
example, in the Vasicek model, the solution for B(r,t,T) is given by the
following:

B(t,T) = .
1 − e−k(T − t)

k
(11)

Therefore, the duration measure with respect to changes in the short rate is
a function of the speed of mean-reversion parameter, k. As this parameter
approaches 0, the duration of a bond with respect to changes in the short
rate approaches the traditional duration measure with respect to changes in
the bond’s own yield. Without mean reversion, the Vasicek model
implies parallel yield shifts, and Equation (4) holds. However, as the
mean reversion speed gets larger, long bonds’ prices are only slightly
more sensitive to changes in the short rate than are intermediate
bonds’ prices because the impact of longer (traditional) duration is
partly offset by the decay in yield volatility (see Figure 15). With mean
reversion, long rates are less volatile than short rates. In this case, the
traditional duration measure would overstate the relative riskiness of long
bonds.

Comparisons of Various Models
Most of the one-factor term structure models that have evolved over the
past 20 years are remarkably similar in the sense that they all essentially
were derived in the framework that we described above. However,
dissatisfaction with certain aspects of the existing technologies have
motivated researchers in the industry and in academia to continue to
develop new versions of term structure models. Four issues that have
motivated the model-builders are:

• Consistency of factor dynamics with empirical observations;

• Ability to fit the current term structure and volatility structure;

• Computational efficiency; and

• Adequacy of one factor to satisfactorily describe the term structure
dynamics.

Differing Factor Specifications. Some of the one-factor models differ by
the definition of the one common factor. However, the vast majority of the
models assume that the factor is the short rate and the models differ by the
specification of the dynamics of the factor.

For example, the mean-reverting normally distributed process for the short
rate that is used to derive the Vasicek model (Equation (9)) leads to
features that many users find problematic. Specifically, nominal interest
rates can become negative and the basis-point volatility of the short rate is
not affected by the current level of interest rates. The Cox-Ingersoll-Ross
model (CIR) is based on the following specification of the short rate which
precludes negative interest rates and allows for level-dependent volatility:

dr = k(l − r)dt + s dz.√r (12)

Because this model is a member of the affine yield class, the solution of
the model is of the form shown in Equation (10). The function B(t, T),
which represents the "duration" of the zero-coupon bond price with respect
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to changes in the short rate, is a complex function of the parameters k, l, s,
and λ. As in the Vasicek model, when the mean-reversion parameter is
non-zero, the durations of long bonds with respect to changes in the short
rate are significantly lower than the traditional duration.

Chan, Karolyi, Longstaff and Sanders (CKLS, 1992) empirically compare
the various models by noting that most of the one-factor models developed
in the 1970s and 1980s are quite similar in that they define the one factor
to be the short rate, r, and their dynamics are described by the following
equation:

dr = k(l - r)dt + srγdz. (13)

The differences between the models are in their specification of k and γ.
For example, the Vasicek model has a non-zero k and γ = 0. CIR also has
a non-zero k and γ = 0.5. We discuss the findings of CKLS and subsequent
researchers in the section "How Does the Yield Curve Evolve Over
Time?".

Fitting the Current Yield Curve and Volatility Structure. One of the
problems that practitioners have with the early term structure models such
as the original Vasicek and CIR models is that the parameters of the
short-rate dynamics (k, l, s) and the market price of risk, λ, must be
estimated using historical data or by minimizing the pricing errors of the
current universe of bonds. Nothing ensures that the market prices of a
set of benchmark bonds matches the model prices. Therefore, a user of
the model must conclude that either the benchmarks are "rich" or "cheap"
or that the model is misspecified. Practitioners who must price derivatives
from the model typically are not comfortable assuming that the market
prices the benchmark Treasury bonds incorrectly.

In 1986, Ho and Lee introduced a model that addressed this concern by
specifying that the "risk-neutral" drift of the spot rate is a function of time.
This addition allows the user to calibrate the model in such a way that
a set of benchmark bonds are correctly priced without making
assumptions regarding the market price of risk. Subsequently developed
models address some shortcomings in the process implied by the Ho-Lee
model (possibility of negative interest rates) or fit more market information
(term structure of implied volatilities). Such models include Black-Derman-
Toy, Black-Karasinski, Hull-White, and Heath-Jarrow-Morton. These
models have become known as the "arbitrage-free" models, as opposed to
the earlier "equilibrium" models. Our brief discussion does not do justice
to these models; interested readers are referred to surveys by Ho (1994)
and Duffie (1995).

These arbitrage-free models represent the current "state of the art" for
pricing and hedging fixed-income derivative instruments. One theoretical
problem with these models is that they are time-inconsistent. The models
are calibrated to fit the market data and then bonds and derivatives are
priced with the implicit assumption that the parameters of the stochastic
process remain as specified. However, as soon as the market changes, the
model needs to be recalibrated, thereby violating the implicit assumption
(see Dybvig (1995)). In reality, most practitioners find this inconsistency a
small price to pay for the ability to calibrate the model to market prices.
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Computational Efficiency. Some of the issues in choosing a model
involve computational efficiency. For example, some of the models have
the feature that the price of bonds and many derivatives on bonds have a
closed-form solution, but others must be solved numerically by techniques
such as Monte Carlo methods and finite differences. Because such
techniques can be employed quite quickly, most practitioners do not feel
that a closed-form solution is necessary. However, a closed-form solution
allows a better understanding of the model and the sensitivities of the price
to the various input variables.

Many practitioners and researchers prefer the Heath-Jarrow-Morton model,
which specifies the entire term structure as the underlying factor, because it
provides the user with the most degrees of freedom in calibrating the
model. However, the major shortcoming of this model is that, when
implemented on a lattice (or tree) structure, the nodes of the lattice do not
recombine. Therefore, the number of nodes grows exponentially as the
number of time steps increase, rendering the time to obtain a price
unacceptably long for many applications. Much of the recent research has
been devoted to approximating this model to make it more computationally
efficient.

Extensions to Multi-Factor Models. Empirical analysis by Litterman and
Scheinkman (1991), among others, shows that two or three factors can
explain most of the cross-sectional differences in Treasury bond returns. A
glance at the imperfect correlations between bond returns provides even
simpler evidence of the insufficiency of a one-factor model. Yet, while
multi-factor models, by definition, explain more of the dynamics of the
term structure than a one-factor model, the cost of the additional
complexity and computational time can be significant. In assessing whether
a one-, two- or three-factor model is appropriate, the tradeoff is the
efficiency gained in pricing and hedging because of the additional factors
against these costs. For certain applications in the fixed-income markets, a
one-factor model is adequate. For a systematic and detailed comparison of
one-factor models vs. two-factor models, see Canabarro (1995).

The general framework in which a multi-factor term structure model is
derived is similar to the one-factor model with the n factors specified in a
similar manner as in Equation (2):

= mj(Fj,t)dt + sj(Fj,t)dzj,
dFj

Fj

(14)

where j = 1, ..., n and the dzj’s can be correlated with correlations
given by ρjk(F,t).

For example, the Cox-Ingersoll-Ross model can be extended into a
multi-factor model. To keep the analysis tractable, most term structure
models define a small number of factors (n = 2 or 3). Some examples in
the literature include the Brennan-Schwartz model, which specifies the two
factors as a long and a short rate, the Brown-Schaefer model, which
specifies the two factors as a long rate and the yield curve steepness, the
Longstaff-Schwartz model, which specifies the two factors as a short rate
and the volatility of the short rate, and the Duffie-Kan model, which
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specifies the factors as the yields on n bonds. A multi-factor version of
Ito’s Lemma provides the following expression for the return of bonds in
the multi-factor world:

= µidt + σidz,dPi (F,t,T)
Pi

(15)

where µi = + mj(F,t)Fj
∂Pi

∂t
1
Pi

∑
j=1

n ∂Pi

∂Fj

1
Pi

+ 1
2 sj(F,t)sk(F,t)ρjk(F,t)FjFk∑

j=1

n

∑
k=1

n ∂2Pi

∂Fj∂Fk

1
Pi

and σi = sjFj .∑
j=1

n ∂Pi

∂Fj

1
Pi

While this expression may appear onerous, it is really a restatement of
Equation (3). Qualitatively, Equation (15) simply states that the return on a
bond can be decomposed in the multi-factor world as follows:

Return on bond i = expected return on bond i + unexpected return on bond i

where expected return on bond i =

return on bond i due to the passage of time (rolling yield)

- the sum of the "durations" with respect to each factor * the expected
realization of the factor

+ the value of all the convexity and cross-convexity terms,

and where unexpected return = the sum of the durations with respect to
each factor * the realization of the factors.
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23 One problem with this explanation is that short positions in long-term bonds are equally volatile as long positions in
them; yet, the former earn a negative risk premium. Stated differently, why would borrowers issue long-term debt that
costs more and is more volatile than short-term debt? The classic liquidity premium hypothesis offered the following
"institutional" answer: Most investors prefer to lend short (to avoid price volatility) while most borrowers prefer to
borrow long (to fix the cost of a long-term project or to ensure continuity of funding). However, we focus above on
the explanations that modern finance offers.

A P P E N D I X B . T E R M S T R U C T U R E M O D E L S A N D M O R E G E N E R A L A S S E T
P R I C I N G M O D E L S

In this Appendix, we link the return decomposition in Equation (15) to
the broader asset pricing literature in modern finance, emphasizing the
determination of bond risk premia. While term structure models focus on
the expected returns and risks of only default-free bonds, asset pricing
models analyze the expected returns and risks of all assets (stocks, bonds,
cash, currencies, real estate, etc.).

The traditional explanation for positive bond risk premia is that long bonds
should offer higher returns (than short bonds) because their returns are
more volatile.23 However, a central theme in modern asset pricing models
is that an asset’s riskiness does not depend on its return volatility but
on its sensitivity to (or covariation with) systematic risk factors. Part of
each asset’s return volatility may be nonsystematic or asset-specific. Recall
that the realized return is a sum of expected return and unexpected return.
Unexpected return depends (i) on an asset’s sensitivity to systematic risk
factors and actual realizations of those risk factors and (ii) on asset-specific
residual risk. Expected return depends only on the first term because the
second term can be diversified away. That is, the market does not reward
investors for assuming diversifiable risk. Note that the term structure
models assume that only systematic factors influence bond returns. This
approach is justifiable by the empirical observation that the asset-specific
component is a much smaller part of a government bond’s return than a
corporate bond’s or a common stock’s return.

The best-known asset pricing model, the Capital Asset Pricing Model
(CAPM), posits that any asset’s expected return is a sum of the
risk-free rate and the asset’s required risk premium. This risk
premium depends on each asset’s sensitivity to the overall market
movements and on the market price of risk. The overall market is often
proxied by the stock market (although a broader measure is probably more
appropriate when analyzing bonds). Then, each asset’s risk depends on its
sensitivity to stock market fluctuations (beta). Intuitively, high-beta assets
that accentuate the volatility of diversified portfolios should offer higher
expected returns, while negative-beta assets that reduce portfolio volatility
can offer low expected returns. The market price of risk is common to all
investors and depends on the market’s overall volatility and on the
aggregate risk aversion level. Note that in a world of parallel yield curve
shifts and positive correlation between stocks and bonds, all bonds
would have positive betas — and these would be proportional to the
traditional duration measures. This is one explanation for the observed
positive bond risk premia.

In the CAPM, the market risk is the only systematic risk factor. In
reality, investors face many different sources of risk. Multi-factor asset
pricing models can be viewed as generalized versions of the CAPM. All
these models state that each asset’s expected return depends on the
risk-free rate (reward for time) and on the asset’s required risk
premium (reward for taking various risks). The latter, in turn,
depends on the asset’s sensitivities ("durations") to systematic risk
factors and on these factors’ market prices of risk. These market prices
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of risk may vary across factors; investors are not indifferent to the source
of return volatility. An example of undesirable volatility is a factor that
makes portfolios perform poorly at times when it hurts investors the most
(that is, when so-called marginal utility of profits/losses is high). Such a
factor would command a positive risk premium; investors would only hold
assets that covary closely with this factor if they are sufficiently rewarded.
Conversely, investors are willing to accept a low risk premium for a factor
that makes portfolios perform well in bad times. Thus, if long bonds were
good recession hedges, they could even command a negative risk premium
(lower required return than the risk-free rate).

The multi-factor framework provides a natural explanation for why
assets’ expected returns may not be linear in return volatility. One can
show that expected returns are concave in return volatility if two factors
with different market prices of risk influence the yield curve — and the
factor with a lower market price of risk has a relatively greater influence
on the long rates. That is, if long bonds are highly sensitive to the factor
with a low market price of risk and less sensitive to the factor with a
high market price of risk, they may exhibit high return volatility and
low expected returns (per unit of return volatility).

What kind of systematic factors should be included in a multi-factor
model? By definition, systematic factors are factors that influence many
assets’ returns. Two plausible candidates for the fundamental factors that
drive asset markets are a real output growth factor (that influences all
assets but the stock market in particular) and an inflation factor (that
influences nominal bonds in particular). The expected excess return of each
asset would be a sum of two products: (i) the asset’s sensitivity to the
growth factor * the market price of risk for the growth factor and (ii) the
asset’s sensitivity to the inflation factor * the market price of risk for the
inflation factor. However, these macroeconomic factors cannot be measured
accurately; moreover, asset returns depend on the market’s expectations
rather than on past observations. Partly for these reasons, the term structure
models tend to use yield-based factors plausibly — as proxies for the
fundamental economic determinants of bond returns.
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